Random Lochs’ Theorem

Abstract. In 1964 Lochs proved a theorem on the number of continued fraction digits of a real number x that can be determined from just knowing its first n decimal digits. In 2001 this result was generalised to a dynamical systems setting by Dajani and Fieldsteel, where it compares sizes of cylinder sets for different transformations. In this article we prove a version of Lochs’ Theorem for random dynamical systems as well as a corresponding Central Limit Theorem. The main ingredient for the proof is an estimate on the asymptotic size of the cylinder sets of the random system in terms of the fiber entropy. To compute this entropy we provide a random version of Rokhlin’s formula for entropy.

[1]  Gary Froyland,et al.  Thermodynamic Formalism for Random Weighted Covering Systems , 2020, Communications in Mathematical Physics.

[2]  E. Verbitskiy,et al.  The random continued fraction transformation , 2015, 1507.05782.

[3]  Paul Manneville,et al.  Different ways to turbulence in dissipative dynamical systems , 1980 .

[4]  B. Solomyak,et al.  Multifractal structure of Bernoulli convolutions , 2010, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  R. Burton,et al.  Ergodic properties of generalized Lüroth series , 1996 .

[6]  W. Bosma,et al.  Entropy and counting correct digits , 1999 .

[7]  K. Dajani,et al.  Invariant Measures, Matching and the Frequency of 0 for Signed Binary Expansions , 2017, Publications of the Research Institute for Mathematical Sciences.

[8]  Attila Herczegh Central Limit Theorems in Ergodic Theory , 2009 .

[9]  Beta-expansion and continued fraction expansion , 2008 .

[10]  C. Faivre On decimal and continued fraction expansions of a real number , 1997 .

[11]  Gustav Lochs,et al.  Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch , 1964 .

[12]  L. Barreira,et al.  Partial quotients of continued fractions and β-expansions , 2008 .

[13]  G. Ragsdell Systems , 2002, Economics of Visual Art.

[14]  Karma Dajani,et al.  Measures of maximal entropy for random -expansions , 2005 .

[15]  Yujun Zhu ON LOCAL ENTROPY OF RANDOM TRANSFORMATIONS , 2008 .

[16]  D. Ornstein On invariant measures , 1960 .

[17]  K. Dajani,et al.  Local dimensions for the random β-transformation , 2013 .

[18]  Tom Kempton On the invariant density of the random β-transformation , 2014 .

[19]  Karma Dajani,et al.  Random -continued fraction expansions , 2018, J. Approx. Theory.

[20]  Wael Bahsoun,et al.  Decay of correlation for random intermittent maps , 2013, 1305.6588.

[21]  W. Fulton,et al.  Foundations of Ergodic Theory , 2016 .

[23]  L. Young Recurrence times and rates of mixing , 1999 .

[24]  K. Dajani,et al.  Matching for random systems with an application to minimal weight expansions , 2020, Nonlinearity.

[25]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[26]  Abraham Boyarsky,et al.  Absolutely continuous invariant measures for random maps with position dependent probabilities , 2003 .

[27]  Karma Dajani,et al.  Equipartition of interval partitions and an application to number theory , 2001 .

[28]  A central limit theorem related to decimal and continued fraction expansion , 1998 .

[29]  Y. Jitsumatsu,et al.  A β-ary to binary conversion for random number generation using a β encoder , 2016 .

[30]  Jun Wu An iterated logarithm law related to decimal and continued fraction expansions , 2008 .

[31]  Stephan Pelikan,et al.  Invariant densities for random maps of the interval , 1984 .

[32]  Lai-Sang Young,et al.  Entropy formula for random transformations , 1988 .

[33]  B. Saussol,et al.  Linear response for random dynamical systems , 2017, 1710.03706.

[34]  Lulu Fang,et al.  Beta-expansion and continued fraction expansion of real numbers , 2016, Acta Arithmetica.

[35]  C. Liverani,et al.  A probabilistic approach to intermittency , 1999, Ergodic Theory and Dynamical Systems.

[36]  Y. Kifer Ergodic theory of random transformations , 1986 .

[37]  K. Dajani,et al.  Random ß-expansions with deleted digits , 2007 .

[38]  M. D. Vries,et al.  Invariant densities for random ß-expansions , 2007 .

[39]  A. J. Homburg,et al.  Random interval diffeomorphisms , 2016, 1611.07248.

[40]  Charlene Kalle,et al.  Invariant densities for random systems of the interval , 2018, Ergodic Theory and Dynamical Systems.

[41]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[42]  INVARIANT DENSITIES FOR POSITION-DEPENDENT RANDOM MAPS ON THE REAL LINE: EXISTENCE, APPROXIMATION AND ERROR BOUNDS , 2006 .

[44]  B. Li,et al.  Limit theorems related to beta-expansion and continued fraction expansion , 2016, 1601.02202.

[45]  T. Morita Random iteration of one-dimensional transformations , 1985 .

[46]  Karma Dajani,et al.  A First Course in Ergodic Theory , 2021 .

[47]  Ronald A. DeVore,et al.  Beta expansions: a new approach to digitally corrected A/D conversion , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[48]  Jun Wu Continued fraction and decimal expansions of an irrational number , 2006 .

[49]  C. Sinan Güntürk,et al.  Mathematics of Analog‐to‐Digital Conversion , 2012 .

[50]  K. Dajani,et al.  Random Β-expansions , 2007 .

[51]  Özgür Yilmaz,et al.  The Golden Ratio Encoder , 2008, IEEE Transactions on Information Theory.

[52]  Émilie Charlier,et al.  Dynamical behavior of alternate base expansions , 2021, Ergodic Theory and Dynamical Systems.

[53]  K. Aihara,et al.  Rigorous estimates of quantization error for A/D converters based on beta-map , 2015 .

[54]  Tomoki Inoue Invariant measures for position dependent random maps with continuous random parameters , 2012 .

[55]  TOHRU KOHDA,et al.  Beta encoders: Symbolic Dynamics and Electronic Implementation , 2012, Int. J. Bifurc. Chaos.

[56]  H. Crauel,et al.  The Abramov-Rokhlin formula , 1992 .

[57]  Jon Aaronson,et al.  An introduction to infinite ergodic theory , 1997 .