Evaluation of CNN model by comparing with convolutional autoencoder and deep neural network for crop classification on hyperspectral imagery

Identification of crops is an important topic in the agricultural domain. Hyperspectral remote sensing data are very useful for crop feature extraction and classification. Remote sensing data is an...

[1]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[2]  Qian Du,et al.  A linear constrained distance-based discriminant analysis for hyperspectral image classification , 2001, Pattern Recognit..

[3]  Pradeep Kumar,et al.  Performance Analysis of Different Predictive Algorithms for the Land Features Modeling , 2018 .

[4]  Oguz Gungor,et al.  Evaluation of random forest method for agricultural crop classification , 2012 .

[5]  Rama Rao Nidamanuri,et al.  Existence of characteristic spectral signatures for agricultural crops – potential for automated crop mapping by hyperspectral imaging , 2012 .

[6]  Aradhana Yaduvanshi,et al.  Support vector machines and generalized linear models for quantifying soil dehydrogenase activity in agro-forestry system of mid altitude central Himalaya , 2016, Environmental Earth Sciences.

[7]  Xiaodong Yu,et al.  PTL-CFS based deep convolutional neural network model for remote sensing classification , 2018, Computing.

[8]  R. Prasad,et al.  Artificial neural network for crop classification using C-band RISAT-1 satellite datasets , 2016, Russian Agricultural Sciences.

[9]  J. Adamowski,et al.  Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification , 2014 .

[10]  Luis Samaniego,et al.  Supervised Classification of Remotely Sensed Imagery Using a Modified $k$-NN Technique , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[11]  L. Eklundh,et al.  A Comparative analysis of standardised and unstandardised Principal Component Analysis in remote sensing , 1993 .

[12]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Xin Pan,et al.  A central-point-enhanced convolutional neural network for high-resolution remote-sensing image classification , 2017 .

[14]  P. Srivastava,et al.  Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS® , 2018 .

[15]  Karbhari V. Kale,et al.  Cotton Crop Discrimination Using Fuzzy Classification Approach , 2012, Journal of the Indian Society of Remote Sensing.

[16]  P. Curran,et al.  Multi‐temporal airborne synthetic aperture radar data for crop classification , 1989 .

[17]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[18]  Juan J. Flores,et al.  The application of artificial neural networks to the analysis of remotely sensed data , 2008 .

[19]  Rabi N. Sahoo,et al.  Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring , 2019, Geocarto International.

[20]  Lu Jia,et al.  SAR image classification using adaptive neighborhood-based convolutional neural network , 2019, European Journal of Remote Sensing.

[21]  Mingquan Wu,et al.  Crop classification using crop knowledge of the previous-year: Case study in Southwest Kansas, USA , 2016 .

[22]  M. F. Baumgardner,et al.  220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3 , 2015 .

[23]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[24]  Shihong Du,et al.  Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Rahul Dev Garg,et al.  Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states , 2018 .

[26]  Christian Heipke,et al.  CLASSIFICATION OF LAND COVER AND LAND USE BASED ON CONVOLUTIONAL NEURAL NETWORKS , 2018 .

[27]  K. Kale,et al.  Evaluation of fuzzy-based classifiers for cotton crop identification , 2013 .

[28]  I. El-Magd,et al.  Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification , 2003 .

[29]  Zhou Guo,et al.  On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery , 2015 .

[30]  K. K. Mayo,et al.  Monitoring land-cover change by principal component analysis of multitemporal Landsat data. , 1980 .

[31]  Ying Li,et al.  Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network , 2017, Remote. Sens..

[32]  L. Buydens,et al.  Estimating the number of components and detecting outliers using Angle Distribution of Loading Subspaces (ADLS) in PCA analysis. , 2018, Analytica chimica acta.

[33]  Mia Hubert,et al.  Sparse PCA for High-Dimensional Data With Outliers , 2016, Technometrics.

[34]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  John M. Pecarina,et al.  Improving optimization of convolutional neural networks through parameter fine-tuning , 2017, Neural Computing and Applications.

[36]  Yanfei Zhong,et al.  Large patch convolutional neural networks for the scene classification of high spatial resolution imagery , 2016 .

[37]  Prashant K. Srivastava,et al.  Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine , 2014, Environmental Earth Sciences.

[38]  Kavita Bhosle,et al.  Evaluation of Deep Learning CNN Model for Land Use Land Cover Classification and Crop Identification Using Hyperspectral Remote Sensing Images , 2019, Journal of the Indian Society of Remote Sensing.

[39]  Nataliia Kussul,et al.  Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data , 2017, IEEE Geoscience and Remote Sensing Letters.

[40]  Yao Liu,et al.  Land cover classification of RADARSAT-2 SAR data using convolutional neural network , 2016, Wuhan University Journal of Natural Sciences.

[41]  V. K. Dadhwal,et al.  Discrimination and classification of mangrove forests using EO-1 Hyperion data: a case study of Indian Sundarbans , 2019 .