Blind joint maximum likelihood channel estimation and data detection for SIMO systems

A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of single-input multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decomposed into an iterative optimisation loop. An efficient global optimisation algorithm called the repeated weighted boosting search is employed at the upper level to optimally identify the unknown SIMO channel model, and the Viterbi algorithm is used at the lower level to produce the maximum likelihood sequence estimation of the unknown data sequence. A simulation example is used to demonstrate the effectiveness of this joint ML optimisation scheme for blind adaptive SIMO systems.

[1]  Chong-Yung Chi,et al.  Batch processing algorithms for blind equalization using higher-order statistics , 2003, IEEE Signal Process. Mag..

[2]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[3]  Sheng Chen,et al.  Experiments with repeating weighted boosting search for optimization signal processing applications , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Lang Tong,et al.  Relationships Between the Constant Modulus and Wiener Receivers , 1998, IEEE Trans. Inf. Theory.

[5]  Jean Pierre Delmas,et al.  Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification , 2001, IEEE Trans. Inf. Theory.

[6]  John J. Shynk,et al.  The constant modulus array for cochannel signal copy and direction finding , 1996, IEEE Trans. Signal Process..

[7]  A. V. Keerthi,et al.  Steady-state analysis of the multistage constant modulus array , 1996, IEEE Trans. Signal Process..

[8]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[9]  César Caballero-Gaudes,et al.  Robust blind identification of SIMO channels: a support vector regression approach , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Aleksandar Dogandzic,et al.  Generalized multivariate analysis of variance - A unified framework for signal processing in correlated noise , 2003, IEEE Signal Process. Mag..

[11]  Y. Wu,et al.  Maximum likelihood joint channel and data estimation using genetic algorithms , 1998, IEEE Trans. Signal Process..

[12]  Karl-Dirk Kammeyer,et al.  Performance Analysis of Maximum-Likelihood Semiblind Estimation of MIMO Channels , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[13]  Brian L. Hughes,et al.  Joint channel estimation and data detection in space-time communications , 2003, IEEE Trans. Commun..

[14]  Dirk T. M. Slock,et al.  Semiblind channel estimation for MIMO spatial multiplexing systems , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[15]  Chong-Yung Chi,et al.  Super-exponential blind adaptive beamforming , 2004, IEEE Transactions on Signal Processing.

[16]  Lajos Hanzo,et al.  An Optimized-Hierarchy-Aided Approximate Log-MAP Detector for MIMO Systems , 2007, IEEE Transactions on Wireless Communications.

[17]  Helmut Bölcskei,et al.  An overview of MIMO communications - a key to gigabit wireless , 2004, Proceedings of the IEEE.

[18]  L. Hanzo,et al.  Constant modulus algorithm aided soft decision-directed blind space-time equalization for SIMO channels , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[19]  A. Livingstone,et al.  Adaptive space-time equalisation for multiple-antenna assisted multiple-input multiple-output systems , 2005 .

[20]  Alex B. Gershman,et al.  Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals , 2006, IEEE Transactions on Signal Processing.

[21]  Erik G. Larsson,et al.  On a decoupled approach to adaptive signal separation using an antenna array , 2002, IEEE Trans. Veh. Technol..

[22]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[23]  Marco Lops,et al.  Performance of iterative data detection and channel estimation for single-antenna and multiple-antennas wireless communications , 2004, IEEE Transactions on Vehicular Technology.

[24]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[25]  Krishna R. Pattipati,et al.  An improved complex sphere decoder for V-BLAST systems , 2004, IEEE Signal Processing Letters.

[26]  L. Vielva,et al.  A fast blind SIMO channel identification algorithm for sparse sources , 2003, IEEE Signal Processing Letters.