Robust Stability via Sign-Definite Decomposition

This paper considers the problem of robust stability of a polynomial family whose coefficients are polynomial functions of the parameters of interests. The problem occurs in the design of a fixed order or fixed structure multivariable feedback controller , parametrized by a real design parameter vector , for a plant , containing a vector of uncertain parameters. The characteristic polynomials of such systems often contain coefficients which depend polynomially on and . Using results on sign-definite decomposition, a new stability test is developed that gives a sufficient condition for Hurwitz stability of the family of closed loop systems that result when and vary over prescribed boxes. This test is reminiscent of Kharitonov's Theorem, even though the family of polynomials considered here is certainly not restricted to be interval or even convex. Moreover the test does reduce to Kharitonov's Theorem for the special case of interval polynomials. Using this criterion recursively and modularly, sets of controllers that stabilize the family of uncertain plants are determined.

[1]  Shankar P. Bhattacharyya,et al.  Fixed order multivariable controller synthesis: A new algorithm , 2008, 2008 47th IEEE Conference on Decision and Control.

[2]  Dragoslav D. Šiljak,et al.  Nonlinear systems;: The parameter analysis and design , 1968 .

[3]  Peter Dorato QUANTIFIED MULTIVARIATE POLYNOMIAL INEQUALITIES: THE MATHEMATICS OF (ALMOST) ALL PRACTICAL CONTROL DESIGN PROBLEMS , 1999 .

[4]  D. Siljak Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.

[5]  Christian H. Bischof,et al.  A Parallel Algorithm for the Sylvester Observer Equation , 1996, SIAM J. Sci. Comput..

[6]  P. Dorato,et al.  Quantified multivariate polynomial inequalities. The mathematics of practical control design problems , 2000 .

[7]  S. Hara,et al.  From Nyquist/Bode to GKYP design: design algorithms with CACSD tools , 2004, SICE 2004 Annual Conference.

[8]  D. D. iljak,et al.  Technical Communique: Robust D-stability via positivity , 1999 .

[9]  Tetsuya Iwasaki,et al.  All fixed-order H∞ controllers: observer-based structure and covariance bounds , 1995, IEEE Trans. Autom. Control..

[10]  S. Hara,et al.  Fixed order controller design via generalized KYP lemma , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[11]  Jürgen Ackermann,et al.  Links between the parameter space and frequency domain methods of robust control , 2001 .

[12]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[13]  Stephen P. Boyd,et al.  Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems , 1991, International Journal of Robust and Nonlinear Control.

[14]  K. Iqbal,et al.  Stability of linearized robotic and musculoskeletal systems with feedback delays , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[15]  J. Ackermann Parameter space design of robust control systems , 1980 .

[16]  C. Elizondo-Gonzalez Necessary and Sufficient Conditions for Robust Positivity of Polynomic Functions Via Sign Decomposition , 2000 .

[17]  Dragoslav D. Šiljak,et al.  Nonnegativity of uncertain polynomials , 1998 .

[18]  Franco Blanchini,et al.  Characterization of PID and lead/lag compensators satisfying given H/sub /spl infin// specifications , 2004, IEEE Transactions on Automatic Control.

[19]  Didier Henrion,et al.  Reduced LMIs for Fixed-Order Polynomial Controller Design , 2004 .

[20]  D. M. Stipanovicand SPR Criteria for Uncertain Rational Matrices via Polynomial Positivity and Bernstein's Expansions , 2001 .

[21]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1994 .

[22]  E. Kaszkurewicz,et al.  Matrix diagonal stability in systems and computation , 1999 .

[23]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[24]  Dusan M. Stipanovic,et al.  Robust D-stability via positivity , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[25]  V. Kharitonov Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .

[26]  S. Hara,et al.  Robust PID control using generalized KYP synthesis: direct open-loop shaping in multiple frequency ranges , 2006, IEEE Control Systems.

[27]  Boris T. Polyak,et al.  Stability regions in the parameter space: D-decomposition revisited , 2006, Autom..

[28]  A. Garulli,et al.  Robustness in Identification and Control , 1989 .