Robust Stability via Sign-Definite Decomposition
暂无分享,去创建一个
[1] Shankar P. Bhattacharyya,et al. Fixed order multivariable controller synthesis: A new algorithm , 2008, 2008 47th IEEE Conference on Decision and Control.
[2] Dragoslav D. Šiljak,et al. Nonlinear systems;: The parameter analysis and design , 1968 .
[3] Peter Dorato. QUANTIFIED MULTIVARIATE POLYNOMIAL INEQUALITIES: THE MATHEMATICS OF (ALMOST) ALL PRACTICAL CONTROL DESIGN PROBLEMS , 1999 .
[4] D. Siljak. Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.
[5] Christian H. Bischof,et al. A Parallel Algorithm for the Sylvester Observer Equation , 1996, SIAM J. Sci. Comput..
[6] P. Dorato,et al. Quantified multivariate polynomial inequalities. The mathematics of practical control design problems , 2000 .
[7] S. Hara,et al. From Nyquist/Bode to GKYP design: design algorithms with CACSD tools , 2004, SICE 2004 Annual Conference.
[8] D. D. iljak,et al. Technical Communique: Robust D-stability via positivity , 1999 .
[9] Tetsuya Iwasaki,et al. All fixed-order H∞ controllers: observer-based structure and covariance bounds , 1995, IEEE Trans. Autom. Control..
[10] S. Hara,et al. Fixed order controller design via generalized KYP lemma , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..
[11] Jürgen Ackermann,et al. Links between the parameter space and frequency domain methods of robust control , 2001 .
[12] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[13] Stephen P. Boyd,et al. Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems , 1991, International Journal of Robust and Nonlinear Control.
[14] K. Iqbal,et al. Stability of linearized robotic and musculoskeletal systems with feedback delays , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[15] J. Ackermann. Parameter space design of robust control systems , 1980 .
[16] C. Elizondo-Gonzalez. Necessary and Sufficient Conditions for Robust Positivity of Polynomic Functions Via Sign Decomposition , 2000 .
[17] Dragoslav D. Šiljak,et al. Nonnegativity of uncertain polynomials , 1998 .
[18] Franco Blanchini,et al. Characterization of PID and lead/lag compensators satisfying given H/sub /spl infin// specifications , 2004, IEEE Transactions on Automatic Control.
[19] Didier Henrion,et al. Reduced LMIs for Fixed-Order Polynomial Controller Design , 2004 .
[20] D. M. Stipanovicand. SPR Criteria for Uncertain Rational Matrices via Polynomial Positivity and Bernstein's Expansions , 2001 .
[21] Shankar P. Bhattacharyya,et al. Robust Control: The Parametric Approach , 1994 .
[22] E. Kaszkurewicz,et al. Matrix diagonal stability in systems and computation , 1999 .
[23] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[24] Dusan M. Stipanovic,et al. Robust D-stability via positivity , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).
[25] V. Kharitonov. Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .
[26] S. Hara,et al. Robust PID control using generalized KYP synthesis: direct open-loop shaping in multiple frequency ranges , 2006, IEEE Control Systems.
[27] Boris T. Polyak,et al. Stability regions in the parameter space: D-decomposition revisited , 2006, Autom..
[28] A. Garulli,et al. Robustness in Identification and Control , 1989 .