Bi-Hamiltonian Systems and Lotka-Volterra Equations: A Three Dimensional Classification
暂无分享,去创建一个
[1] M. Plank. Hamiltonian structures for the n‐dimensional Lotka–Volterra equations , 1995 .
[2] Tassos Bountis,et al. On the complete and partial integrability of non-Hamiltonian systems , 1984 .
[3] S. Wojciechowski,et al. A method of finding integrals for three-dimensional dynamical systems , 1988 .
[4] Kenneth R. Meyer,et al. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .
[5] Franco Magri,et al. A Simple model of the integrable Hamiltonian equation , 1978 .
[6] M. Feix,et al. Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .
[7] W B Steeb,et al. Continuous symmetries of the Lorenz model and the Rikitake two-disc dynamo system , 1982 .
[8] H. Baumgärtel. Thirring, W., Lehrbuch der Mathematischen Physik, Band 1: Klassische Dynamische Systeme. Wien-New York. Springer-Verlag. 1977. XIII, 255 S., 58 Abb., S 250.—. DM 36.—. US $15.90 , 1979 .
[9] A. Goriely. Investigation of Painlevé property under time singularities transformations , 1992 .
[10] Marek Kus,et al. Integrals of motion for the Lorenz system , 1983 .
[11] J. Strelcyn,et al. Integrals of quadratic ordinary differential equations in R3: The Lotka-Volterra system , 1990 .
[12] A. Weinstein. Local structure of Poisson manifolds , 2021, Lectures on Poisson Geometry.
[13] Josef Hofbauer,et al. The theory of evolution and dynamical systems , 1988 .