Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules

[1]  A. Aberle,et al.  Four‐Terminal Perovskite on Silicon Tandem Solar Cells Optimal Measurement Schemes , 2020 .

[2]  S. Mhaisalkar,et al.  Bifacial, Color-Tunable Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics. , 2019, ACS applied materials & interfaces.

[3]  Jinsong Huang,et al.  Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films , 2019, Science Advances.

[4]  I. Mora‐Seró,et al.  An Equivalent Circuit for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures , 2019, Joule.

[5]  A. Aberle,et al.  Highly Efficient Semi-Transparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems. , 2019, ACS applied materials & interfaces.

[6]  Daniel Pérez-Del-Rey,et al.  Room‐Temperature Cubic Phase Crystallization and High Stability of Vacuum‐Deposited Methylammonium Lead Triiodide Thin Films for High‐Efficiency Solar Cells , 2019, Advanced materials.

[7]  Jinsong Huang,et al.  Imperfections and their passivation in halide perovskite solar cells. , 2019, Chemical Society reviews.

[8]  Yanlin Song,et al.  Water‐Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer , 2019, Advanced Functional Materials.

[9]  Aldo Di Carlo,et al.  Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules , 2019, ACS Energy Letters.

[10]  Hyun Suk Jung,et al.  Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids , 2019, ACS Energy Letters.

[11]  S. Paetel,et al.  Toward scalable perovskite‐based multijunction solar modules , 2019, Progress in Photovoltaics: Research and Applications.

[12]  Tak W. Kee,et al.  Triggering the Passivation Effect of Potassium Doping in Mixed‐Cation Mixed‐Halide Perovskite by Light Illumination , 2019, Advanced Energy Materials.

[13]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[14]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[15]  C. Ballif,et al.  25.1%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cell Based on a p-type Monocrystalline Textured Silicon Wafer and High-Temperature Passivating Contacts , 2019, ACS Energy Letters.

[16]  Sisi He,et al.  Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer , 2018, Advanced Functional Materials.

[17]  J. Poortmans,et al.  Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells , 2018, ACS Energy Letters.

[18]  Jing Li,et al.  Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module , 2018, Nature Communications.

[19]  A. Carlo,et al.  Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11% , 2018, Solar Energy Materials and Solar Cells.

[20]  L. Qiu,et al.  Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules , 2018, Nature Communications.

[21]  C. Ballif,et al.  Perovskite/Perovskite/Silicon Monolithic Triple-Junction Solar Cells with a Fully Textured Design , 2018, ACS Energy Letters.

[22]  C. Brabec,et al.  Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications , 2018 .

[23]  Henk J. Bolink,et al.  Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade , 2018 .

[24]  Jingjing Zhao,et al.  Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules , 2018 .

[25]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[26]  H. Bolink,et al.  Vacuum Deposited Triple‐Cation Mixed‐Halide Perovskite Solar Cells , 2018 .

[27]  Tongle Bu,et al.  Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. , 2018, ACS applied materials & interfaces.

[28]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[29]  C. Ballif,et al.  Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction , 2018 .

[30]  Kai Zhu,et al.  Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization , 2018 .

[31]  Shinji Aramaki,et al.  Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics , 2017, Nature Nanotechnology.

[32]  Ronn Andriessen,et al.  Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating , 2017, Solar Energy Materials and Solar Cells.

[33]  C. Ballif,et al.  Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? – An Overview , 2018 .

[34]  Matthew R. Leyden,et al.  Combination of Hybrid CVD and Cation Exchange for Upscaling Cs‐Substituted Mixed Cation Perovskite Solar Cells with High Efficiency and Stability , 2018 .

[35]  Tongle Bu,et al.  A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells , 2017 .

[36]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[37]  Tongle Bu,et al.  Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells , 2017 .

[38]  T. Murakami,et al.  Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite , 2017, Scientific Reports.

[39]  Trystan Watson,et al.  Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules , 2017 .

[40]  Xiaofan Deng,et al.  Overcoming the challenges of large-area high-efficiency perovskite solar cells , 2017 .

[41]  Michael Schmidt,et al.  Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio , 2017, IEEE Journal of Photovoltaics.

[42]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[43]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[44]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[45]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[46]  G. Cao,et al.  Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film , 2017 .

[47]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[48]  M. Wasielewski,et al.  Enhanced Efficiency of Hot‐Cast Large‐Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation , 2017 .

[49]  Kai Zhu,et al.  Perovskite ink with wide processing window for scalable high-efficiency solar cells , 2017, Nature Energy.

[50]  Shin Woei Leow,et al.  Over 20% Efficient CIGS–Perovskite Tandem Solar Cells , 2017 .

[51]  Chun-Guey Wu,et al.  The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells , 2017 .

[52]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[53]  Yue Hu,et al.  Stable Large‐Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency , 2017 .

[54]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[55]  Emmanuel Kymakis,et al.  Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area , 2017 .

[56]  Bin Fan,et al.  Large area perovskite solar cell module , 2017 .

[57]  Han‐Ik Joh,et al.  Reduced graphene oxide-assisted crystallization of perovskite via solution-process for efficient and stable planar solar cells with module-scales , 2016 .

[58]  Nripan Mathews,et al.  A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability , 2016 .

[59]  Min Ho Lee,et al.  Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating , 2016 .

[60]  Henk J. Bolink,et al.  Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers , 2016 .

[61]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[62]  James E. Evans,et al.  Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis , 2016, Journal of The American Society for Mass Spectrometry.

[63]  Matthew R. Leyden,et al.  Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability , 2016 .

[64]  J. Rogelj,et al.  Paris Agreement climate proposals need a boost to keep warming well below 2 °C , 2016, Nature.

[65]  X. Tao,et al.  Recent progress in the synthesis of hybrid halide perovskite single crystals , 2016 .

[66]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[67]  Wei Zhang,et al.  Pinhole-free perovskite films for efficient solar modules , 2016 .

[68]  Kai Zhu,et al.  Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. , 2016, Chemical Society reviews.

[69]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[70]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[71]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[72]  Q. Gong,et al.  Morphology control of the perovskite films for efficient solar cells. , 2015, Dalton transactions.

[73]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[74]  Christophe Ballif,et al.  Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules , 2015, IEEE Journal of Photovoltaics.

[75]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[76]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[77]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[78]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[79]  Cesare Soci,et al.  Lead iodide perovskite light-emitting field-effect transistor , 2015, Nature Communications.

[80]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[81]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[82]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[83]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[84]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[85]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[86]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[87]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[88]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.