Animal Models of Uveal Melanoma: Methods, Applicability, and Limitations

Animal models serve as powerful tools for investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic agents. They have facilitated rapid scientific progress in many tumor entities. However, for establishing a powerful animal model of uveal melanoma fundamental challenges remain. To date, no animal model offers specific genetic attributes as well as histologic, immunologic, and metastatic features of uveal melanoma. Syngeneic models with intraocular injection of cutaneous melanoma cells may suit best for investigating immunologic/tumor biology aspects. However, differences between cutaneous and uveal melanoma regarding genetics and metastasis remain problematic. Human xenograft models are widely used for evaluating novel therapeutics but require immunosuppression to allow tumor growth. New approaches aim to establish transgenic mouse models of spontaneous uveal melanoma which recently provided preliminary promising results. Each model provides certain benefits and may render them suitable for answering a respective scientific question. However, all existing models also exhibit relevant limitations which may have led to delayed research progress. Despite refined therapeutic options for the primary ocular tumor, patients' prognosis has not improved since the 1970s. Basic research needs to further focus on a refinement of a potent animal model which mimics uveal melanoma specific mechanisms of progression and metastasis. This review will summarise and interpret existing animal models of uveal melanoma including recent advances in the field.

[1]  F. Holz,et al.  Overexpression of hepatocyte growth factor and an oncogenic CDK4 variant in mice alters corneal stroma morphology but does not lead to spontaneous ocular melanoma. , 2016, Melanoma research.

[2]  Syed Junaid Hassan,et al.  Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma , 2016, Oncotarget.

[3]  F. Holz,et al.  Intravitreally Injected HCmel12 Melanoma Cells Serve as a Mouse Model of Tumor Biology of Intraocular Melanoma , 2016, Current eye research.

[4]  D. Hu,et al.  Effects of Zeaxanthin on Growth and Invasion of Human Uveal Melanoma in Nude Mouse Model , 2015, Journal of ophthalmology.

[5]  J. Abastado,et al.  Lymphadenectomy promotes tumor growth and cancer cell dissemination in the spontaneous RET mouse model of human uveal melanoma , 2015, Oncotarget.

[6]  Arati Sharma,et al.  Current State of Animal (Mouse) Modeling in Melanoma Research , 2015, Cancer growth and metastasis.

[7]  P. Queirolo,et al.  Potential Role of Soluble c-Met as a New Candidate Biomarker of Metastatic Uveal Melanoma. , 2015, JAMA ophthalmology.

[8]  J. Huang,et al.  Oncogenic G Protein GNAQ Induces Uveal Melanoma and Intravasation in Mice. , 2015, Cancer research.

[9]  S. Chahory,et al.  A case of primary choroidal malignant melanoma in a cat. , 2015, Veterinary ophthalmology.

[10]  C. Shields,et al.  American Joint Committee on Cancer Classification of Uveal Melanoma (Anatomic Stage) Predicts Prognosis in 7,731 Patients: The 2013 Zimmerman Lecture. , 2015, Ophthalmology.

[11]  Xiaoping Hu,et al.  Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging , 2015, Proceedings of the National Academy of Sciences.

[12]  M. Hendrix,et al.  Genetic analysis of the ‘uveal melanoma’ C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line , 2015, Pigment cell & melanoma research.

[13]  Matthew W. Wilson,et al.  International Validation of the American Joint Committee on Cancer's 7th Edition Classification of Uveal Melanoma. , 2015, JAMA ophthalmology.

[14]  P. Davis,et al.  Low thyroid hormone levels improve survival in murine model for ocular melanoma , 2015, Oncotarget.

[15]  J. Abastado,et al.  Macrophage depletion reduces postsurgical tumor recurrence and metastatic growth in a spontaneous murine model of melanoma , 2015, Oncotarget.

[16]  A. Nicolas,et al.  Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target , 2014, Molecular oncology.

[17]  A. Bosserhoff,et al.  Tg(Grm1) transgenic mice: a murine model that mimics spontaneous uveal melanoma in humans? , 2014, Experimental eye research.

[18]  S. Thorne,et al.  Splenectomy Promotes Indirect Elimination of Intraocular Tumors by CD8+ T Cells That Is Associated with IFNγ- and Fas/FasL-Dependent Activation of Intratumoral Macrophages , 2014, Cancer Immunology Research.

[19]  A. Jochemsen,et al.  Modeling of human uveal melanoma in zebrafish xenograft embryos. , 2014, Investigative ophthalmology & visual science.

[20]  Kang Zhang,et al.  Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. , 2014, Cancer cell.

[21]  B. Damato,et al.  Chick embryo model systems to study uveal melanoma metastasis , 2014 .

[22]  M. Ghert,et al.  Lost in translation: animal models and clinical trials in cancer treatment. , 2014, American journal of translational research.

[23]  L. Desjardins,et al.  Targeting Bcl-2/Bcl-XL Induces Antitumor Activity in Uveal Melanoma Patient-Derived Xenografts , 2014, PloS one.

[24]  Manuel Hidalgo,et al.  Patient-derived xenograft models: an emerging platform for translational cancer research. , 2014, Cancer discovery.

[25]  Gary K. Schwartz,et al.  Crizotinib, a c-Met Inhibitor, Prevents Metastasis in a Metastatic Uveal Melanoma Model , 2013, Molecular Cancer Therapeutics.

[26]  G. Hannon,et al.  Patient-derived tumor xenografts: transforming clinical samples into mouse models. , 2013, Cancer research.

[27]  A. Bowcock,et al.  BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma , 2013, BMC Cancer.

[28]  H. Grossniklaus,et al.  Host pigment epithelium-derived factor (PEDF) prevents progression of liver metastasis in a mouse model of uveal melanoma , 2013, Clinical & Experimental Metastasis.

[29]  S. J. Kang,et al.  In vivo high-frequency contrast-enhanced ultrasonography of choroidal melanoma in rabbits: imaging features and histopathologic correlations , 2013, British Journal of Ophthalmology.

[30]  D. Schadendorf,et al.  Conjunctival Melanomas Harbor BRAF and NRAS Mutations and Copy Number Changes Similar to Cutaneous and Mucosal Melanomas , 2013, Clinical Cancer Research.

[31]  M. Jager,et al.  Inflammation in uveal melanoma , 2013, Eye.

[32]  H. Grossniklaus,et al.  Bevacizumab and intraocular tumors: an intriguing paradox , 2012, Molecular vision.

[33]  N. Sharpless,et al.  Genetically engineered cancer models, but not xenografts, faithfully predict anticancer drug exposure in melanoma tumors. , 2012, The oncologist.

[34]  H. Kluger,et al.  Driver Mutations in Melanoma: Lessons Learned From Bench-to-Bedside Studies , 2012, Current Oncology Reports.

[35]  R. Braun,et al.  Modeling human choroidal melanoma xenograft growth in immunocompromised rodents to assess treatment efficacy. , 2012, Investigative ophthalmology & visual science.

[36]  J. Verne,et al.  Descriptive epidemiology of malignant mucosal and uveal melanomas and adnexal skin carcinomas in Europe. , 2012, European journal of cancer.

[37]  M J Jager,et al.  Synergistic growth inhibition based on small-molecule p53 activation as treatment for intraocular melanoma , 2012, Oncogene.

[38]  S. Woodman,et al.  Genetic and molecular characterization of uveal melanoma cell lines , 2012, Pigment cell & melanoma research.

[39]  Arun D. Singh,et al.  Uveal melanoma: trends in incidence, treatment, and survival. , 2011, Ophthalmology.

[40]  Peter W. Chen,et al.  NKT cell exacerbation of liver metastases arising from melanomas transplanted into either the eyes or spleens of mice. , 2011, Investigative ophthalmology & visual science.

[41]  S. J. Kang,et al.  In vivo high-frequency, contrast-enhanced ultrasonography of uveal melanoma in mice: imaging features and histopathologic correlations. , 2011, Investigative ophthalmology & visual science.

[42]  J. O'Brien,et al.  Mutations in GNA11 in uveal melanoma. , 2010, The New England journal of medicine.

[43]  M. Planellas,et al.  Unusual presentation of a metastatic uveal melanoma in a cat. , 2010, Veterinary ophthalmology.

[44]  E. Jordanova,et al.  In Aged Mice, Outgrowth of Intraocular Melanoma Depends on Proangiogenic M2-Type Macrophages , 2010, The Journal of Immunology.

[45]  J. Abastado,et al.  Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. , 2010, The Journal of clinical investigation.

[46]  H. Grossniklaus,et al.  Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma. , 2010, Investigative ophthalmology & visual science.

[47]  E. Barillot,et al.  Establishment and Characterization of a Panel of Human Uveal Melanoma Xenografts Derived from Primary and/or Metastatic Tumors , 2010, Clinical Cancer Research.

[48]  M. D’Incalci,et al.  Contemporary pre-clinical development of anticancer agents--what are the optimal preclinical models? , 2009, European journal of cancer.

[49]  J. Augsburger,et al.  Effectiveness of treatments for metastatic uveal melanoma. , 2009, American journal of ophthalmology.

[50]  J. Marshall,et al.  The effect of blue light exposure in an ocular melanoma animal model , 2009, Journal of experimental & clinical cancer research : CR.

[51]  Baocun Sun,et al.  A pilot study of vasculogenic mimicry immunohistochemical expression in intraocular melanoma model. , 2009, Oncology reports.

[52]  E. Simpson,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi , 2008, Nature.

[53]  R. Folberg,et al.  Authenticating Cell Lines in Ophthalmic Research Laboratories N E W D E V E L O P M E N T S , 2022 .

[54]  A. Richmond,et al.  Mouse xenograft models vs GEM models for human cancer therapeutics , 2008, Disease Models & Mechanisms.

[55]  H. Grossniklaus,et al.  In-vivo xenograft murine human uveal melanoma model develops hepatic micrometastases , 2008, Melanoma research.

[56]  J. Niederkorn,et al.  Differential expression of chemokine receptors on uveal melanoma cells and their metastases. , 2008, Investigative ophthalmology & visual science.

[57]  A. Biggeri,et al.  Incidence of uveal melanoma in Europe. , 2007, Ophthalmology.

[58]  W. Tolleson,et al.  Two Cases of Uveal Amelanotic Melanoma in Transgenic Tyr-HRAS+ Ink4a/Arf Heterozygous Mice , 2007, Toxicologic pathology.

[59]  J. Marshall,et al.  The use of a cyclooxygenase-2 inhibitor (Nepafenac) in an ocular and metastatic animal model of uveal melanoma. , 2007, Carcinogenesis.

[60]  R. Folberg,et al.  Modeling the behavior of uveal melanoma in the liver. , 2007, Investigative ophthalmology & visual science.

[61]  A. Nantel,et al.  Transcriptional profiling of human uveal melanoma from cell lines to intraocular tumors to metastasis , 2007, Clinical & Experimental Metastasis.

[62]  D. Redelmeier,et al.  Translation of research evidence from animals to humans. , 2006, JAMA.

[63]  M. Barbacid,et al.  Rapid growth of invasive metastatic melanoma in carcinogen-treated hepatocyte growth factor/scatter factor-transgenic mice carrying an oncogenic CDK4 mutation. , 2006, The American journal of pathology.

[64]  Dae-Yong Kim,et al.  Malignant ocular melanoma in a dog , 2006, Journal of veterinary science.

[65]  H. Grossniklaus,et al.  Combined Immunologic and Anti-Angiogenic Therapy Reduces Hepatic Micrometastases in a Murine Ocular Melanoma Model , 2006, Current eye research.

[66]  J. Marshall,et al.  Characterization of ocular and metastatic uveal melanoma in an animal model. , 2005, Investigative ophthalmology & visual science.

[67]  J. Earle,et al.  Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. , 2005, Archives of ophthalmology.

[68]  L. Chin,et al.  Spontaneous uveal amelanotic melanoma in transgenic Tyr-RAS+ Ink4a/Arf-/- mice. , 2005, Archives of ophthalmology.

[69]  N. Schalij-Delfos,et al.  Whole-body bioluminescent imaging of human uveal melanoma in a new mouse model of local tumor growth and metastasis. , 2005, Investigative ophthalmology & visual science.

[70]  Ahmedin Jemal,et al.  Incidence of noncutaneous melanomas in the U.S. , 2005, Cancer.

[71]  A. Almaraz,et al.  Efficacy of five human melanocytic cell lines in experimental rabbit choroidal melanoma , 2005, Melanoma research.

[72]  M. Lindstrom,et al.  Effectiveness of 1alpha-hydroxyvitamin D2 in inhibiting tumor growth in a murine transgenic pigmented ocular tumor model. , 2004, Archives of ophthalmology.

[73]  L. Kèlland,et al.  Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. , 2004, European journal of cancer.

[74]  T. Kivelä,et al.  Very long-term prognosis of patients with malignant uveal melanoma. , 2003, Investigative ophthalmology & visual science.

[75]  S. Heegaard,et al.  Establishment and characterization of human uveal malignant melanoma xenografts in nude mice , 2003, Melanoma research.

[76]  R. Folberg,et al.  An orthotopic model for human uveal melanoma in SCID mice. , 2002, Microvascular research.

[77]  K. Kwong,et al.  MRI of Blood Volume and Cellular Uptake of Superparamagnetic Iron in an Animal Model of Choroidal Melanoma , 2002, Ophthalmic Research.

[78]  A. Miodoński,et al.  Angiomorphology of the pigmented Bomirski melanoma growing in hamster eye. , 2001, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[79]  N. Moins,et al.  Establishment of IPC 227 cells as human xenografts in rabbits: a model of uveal melanoma , 2000, Melanoma research.

[80]  Y. Diebold,et al.  Uveal melanoma model with metastasis in rabbits: effects of different doses of cyclosporine A. , 2000, Current eye research.

[81]  H. Grossniklaus,et al.  Animal models of uveal melanoma. , 2000, Melanoma research.

[82]  H. Grossniklaus,et al.  A new technique for implantation of tissue culture melanoma cells in a murine model of metastatic ocular melanoma , 2000, Melanoma research.

[83]  J. Tutor,et al.  Uveal melanoma model with metastasis in rabbits: Effects of different doses of cyclosporine A , 2000 .

[84]  R. Folberg,et al.  Evaluation of the human choroidal melanoma rabbit model for studying microcirculation patterns with confocal ICG and histology. , 1999, Experimental eye research.

[85]  I H Wallow,et al.  Transgenic mice with pigmented intraocular tumors: tissue of origin and treatment. , 1998, Investigative ophthalmology & visual science.

[86]  Wei Liu,et al.  Transgenic mouse model for skin malignant melanoma , 1998, Oncogene.

[87]  H. Grossniklaus,et al.  Pigmented uveal tumours in a transgenic mouse model , 1998, The British journal of ophthalmology.

[88]  J. Niederkorn,et al.  Antibody-Mediated Cytolysis of Epidermal Growth Factor Receptor — Positive Human Uveal Melanoma Cells , 2005 .

[89]  R. Gerard,et al.  Inhibition of metastasis of intraocular melanomas by adenovirus-mediated gene transfer of plasminogen activator inhibitor type 1 (PAI-1) in an athymic mouse model. , 1997, Blood.

[90]  T. Luider,et al.  Association between NM23-H1 gene expression and metastasis of human uveal melanoma in an animal model. , 1996, Investigative ophthalmology & visual science.

[91]  M. Meyer,et al.  Clinicopathologic spectrum of primary uveal melanocytic lesions in an animal model. , 1992, Ophthalmology.

[92]  C. Shields,et al.  Management of posterior uveal melanoma. , 1991, Survey of ophthalmology.

[93]  J. Render,et al.  Anterior uveal melanoma, with secondary keratitis, cataract, and glaucoma, in a horse. , 1991, Journal of the American Veterinary Medical Association.

[94]  G. Sanborn,et al.  Mouse model of brachytherapy in consort with enucleation for treatment of malignant intraocular melanoma. , 1990, Archives of ophthalmology.

[95]  J. Niederkorn,et al.  Immunologic evaluation of spontaneous regression of an intraocular murine melanoma. , 1990, Investigative ophthalmology & visual science.

[96]  J. Schuh Congenital intraocular melanoma in a calf. , 1989, Journal of comparative pathology.

[97]  A. Slominski,et al.  The natural history of a family of transplantable melanomas in hamsters , 1988, Cancer and Metastasis Reviews.

[98]  W. Mieler,et al.  A new technique for subchoroidal implantation of experimental malignant melanoma. , 1988, Investigative ophthalmology & visual science.

[99]  R. Peiffer,et al.  Morphology and Behavior of Primary Ocular Melanomas in 91 Dogs , 1986, Veterinary pathology.

[100]  Jørgensen Jb,et al.  Malignant melanoma of the uvea in the dog. , 1986 .

[101]  J. Niederkorn Enucleation in consort with immunologic impairment promotes metastasis of intraocular melanomas in mice. , 1984, Investigative ophthalmology & visual science.

[102]  D. Albert,et al.  Feline uveal melanoma model induced with feline sarcoma virus. , 1981, Investigative ophthalmology & visual science.

[103]  G. Nicolson,et al.  Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. , 1976, Journal of the National Cancer Institute.

[104]  D. Krohn,et al.  Subchoroidal transplantation of experimental malignant melanoma. , 1970, American journal of ophthalmology.

[105]  P. Henkind,et al.  Intra-ocular malignant melanoma in domestic cats. , 1969, Transactions of the ophthalmological societies of the United Kingdom.

[106]  D. Albert,et al.  In vitro neoplastic transformation of uveal and retinal tissue by oncogenic DNA viruses. , 1968, Investigative ophthalmology.

[107]  H. Greene,et al.  The growth and metastasis of amelanotic melanomas in heterologous hosts. , 1966, Cancer research.

[108]  F. Fraunfelder,et al.  Experimental intraocular malignant melanoma in the Syrian Golden hamster. , 1961, American journal of ophthalmology.

[109]  T. Manser,et al.  Establishment and Characterization of Orthotopic Mouse Models for Human Uveal Melanoma Hepatic Colonization. , 2016, The American journal of pathology.

[110]  H. Grossniklaus,et al.  Constitutive overexpression of pigment epithelium-derived factor inhibition of ocular melanoma growth and metastasis. , 2010, Investigative ophthalmology & visual science.

[111]  G. Barsh,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi , 2010 .

[112]  N. Rao,et al.  Heterotransplantation of human uveal melanoma , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[113]  R. Scully,et al.  Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS): COMS report no. 15. , 2001, Archives of ophthalmology.

[114]  H. Grossniklaus,et al.  B16LS9 melanoma cells spread to the liver from the murine ocular posterior compartment (PC). , 1999, Current eye research.

[115]  H. Grossniklaus,et al.  Murine model of anterior and posterior ocular melanoma. , 1995, Current eye research.

[116]  E. Gragoudas,et al.  ESTABLISHMENT OF PIGMENTED CHOROIDAL MELANOMAS IN A RABBIT MODEL , 1994, Retina.

[117]  E. Mayhew,et al.  Effect of anti-ganglioside antibodies on the metastatic spread of intraocular melanomas in a nude mouse model of human uveal melanoma. , 1993, Current eye research.

[118]  K. Regan,et al.  Intraocular melanoma with multiple metastases in a cat. , 1988, Journal of the American Veterinary Medical Association.

[119]  J. Jorgensen,et al.  Malignant melanoma of the uvea in the dog. , 1986, Nordisk veterinaermedicin.