Statistical Benchmarking of Surrogate-Based and Other Optimization Methods Constrained by Fixed Computational Budget

The aerodynamic design of an asymmetric oversized payload fairing subject to stability constraints was used as an example of a derivative-free, expensive black box function to benchmark the relative performance of 16 different optimization methods, ranging from gradient-based to simulated annealing and genetic algorithms/evolution strategies, including four methods with surrogate-based accelerators. The focus of the present paper is on the practical attainability of getting an acceptable solution quickly. The various algorithms are compared using performance benchmarking in a statistical sense, yielding an “efficient frontier” with special emphasis on the case when designers are confronted with small computational budgets.

[1]  William M. Chan,et al.  Enhancements of a three-dimensional hyperbolic grid generation scheme , 1992 .

[2]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[3]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[4]  Daisuke Sasaki,et al.  Low-Boom Design Optimization for SST Canard-Wing-Fuselage Configuration , 2003 .

[5]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[6]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[7]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[8]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[9]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[10]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[11]  Andy J. Keane,et al.  On the Design of Optimization Strategies Based on Global Response Surface Approximation Models , 2005, J. Glob. Optim..

[12]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[13]  Jean-Louis Coulomb,et al.  Diffuse-element method and quadtrees: two "ingredients" for an adaptive response surface , 2002 .

[14]  Robert E. Childs,et al.  Surrogate-Based Design Optimization of a Large Asymmetric Launch Vehicle Payload Fairing , 2007 .

[15]  G. G. Wang,et al.  Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points , 2003 .

[16]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[17]  Abhijit Chatterjee,et al.  Adaptive response surface modeling-based method for analog circuit sizing , 2004, IEEE International SOC Conference, 2004. Proceedings..

[18]  Thong Q Dang,et al.  Aerodynamics of cross-flow fans and their application to aircraft propulsion and flow control , 2009 .

[19]  Robert E. Childs,et al.  Cumulative global metamodels with uncertainty — a tool for aerospace integration , 2006, The Aeronautical Journal (1968).

[20]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[21]  AN ADAPTIVE RESPONSE SURFACE METHOD UTILIZING ERROR ESTIMATES , 2000 .

[22]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[23]  Patrick H. Reisenthel,et al.  Development of Multidisciplinary, Multifidelity Analysis, Integration, and Optimization of Aerospace Vehicles , 2010 .