The anti‐hierarchical growth of supermassive black holes

I present a new method to unveil the history of cosmic accretion and the build-up of supermassive black holes (SMBHs) in the nuclei of galaxies, based on observations of the evolving radio and (hard) X-ray luminosity functions of active galactic nuclei (AGN). The fundamental plane of black hole activity discovered by Merloni, Heinz & Di Matteo, which defines a universal correlation among black hole mass (M), 2-10 keV X-ray luminosity and 5-GHz radio luminosity is used as a mass and accretion rate estimator, provided a specific functional form for the dependency of the X-ray luminosity on the dimensionless accretion rate m is assumed. I adopt the local black hole mass function (BHMF) as derived from the velocity dispersion (a) distributions of nearby galaxies coupled with the M - a relation as a boundary condition to integrate backwards in time the continuity equation for the evolution of SMBH, neglecting the role of mergers in shaping up the BHMF. Under the most general assumption that, independently on M, black hole accretion proceeds in a radiatively efficient way above a certain rate, and in a radiatively inefficient way below it, the redshift evolution of the BHMF and the black hole accretion rate (BHAR) function (i.e. the distribution of the Eddington scaled accretion rates for objects of any given mass) are calculated self-consistently. The only tunable parameters are the overall efficiency of extracting gravitational energy from the accreting gas, ∈, and the critical ratio of the X-ray to Eddington luminosity, L 2-10 keV,cr /L Edd ≡ x cr , at which the transition between accretion modes takes place. For fiducial values of these parameters (∈ = 0.1 and x cr = 10 -3 ), I found that half (∼85 per cent) of the local black hole mass density was accumulated at redshift z < 1 (z < 3), mostly in radiatively efficient episodes of accretion. The evolution of the BHMF between z = 0 and z ∼ 3 shows clear signs of an anti-hierarchical behaviour: while the majority of the most massive objects (M ≥ 10 9 ) were already in place at z ∼ 3, lower mass ones mainly grew at progressively lower redshift, so that the average black hole mass increases with increasing redshift. In addition, the average accretion rate decreases towards lower redshift. Consequently, sources in the radiatively inefficient regime of accretion only begin to dominate the comoving accretion energy density in the Universe at z < 1 (with the exact value of z depending on x cr ), while at the peak of the BHAR history, radiatively efficient accretion dominates by almost an order of magnitude. I will discuss the implications of these results for the efficiency of accretion on to SMBH, the lifetimes of quasars and duty cycles, the history of AGN feedback in the form of mechanical energy output and, more generally, for the cosmological models of structure formation in the Universe.

[1]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[2]  T. Hosokawa Cosmological Growth History of Supermassive Black Holes and Demographics in the High-z Universe: Do Lyman Break Galaxies Have Supermassive Black Holes? , 2004 .

[3]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[4]  Youjun Lu,et al.  Constraints on QSO Models from a Relation between the QSO Luminosity Function and the Local Black Hole Mass Function , 2003, astro-ph/0311404.

[5]  R. Somerville,et al.  High-redshift quasars and the supermassive black hole mass budget: constraints on quasar formation models , 2003, astro-ph/0311008.

[6]  M. Vestergaard Early Growth and Efficient Accretion of Massive Black Holes at High Redshift , 2003, astro-ph/0309521.

[7]  T. Maccarone,et al.  The connection between radio-quiet active galactic nuclei and the high/soft state of X-ray binaries , 2003, astro-ph/0309137.

[8]  Takamitsu Miyaji,et al.  Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background , 2003, astro-ph/0308140.

[9]  Thomas J. Maccarone,et al.  Do X-ray binary spectral state transition luminosities vary? , 2003, astro-ph/0308036.

[10]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[11]  P. Jonker,et al.  Jet-dominated states: an alternative to advection across black hole event horizons in ‘quiescent’ X-ray binaries , 2003, astro-ph/0306614.

[12]  P. Ciliegi,et al.  The HELLAS2XMM survey IV. Optical identifications and the evolution of the accretion luminosity in the Universe , 2003, astro-ph/0306556.

[13]  D. M. Alexander,et al.  Optical and Infrared Properties of the 2 Ms Chandra Deep Field North X-Ray Sources , 2003, astro-ph/0306212.

[14]  M. Bernardi,et al.  The quasar epoch and the stellar ages of early-type galaxies , 2003, astro-ph/0305298.

[15]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[16]  R. Sunyaev,et al.  The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets , 2003, astro-ph/0305252.

[17]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[18]  A. Loeb,et al.  Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-Ray Luminosity Functions of Quasars , 2003, astro-ph/0304156.

[19]  E. Quataert Radiatively Inefficient Accretion Flow Models of Sgr A , 2003, astro-ph/0304099.

[20]  L. Wisotzki,et al.  The evolution of faint AGN between z ' 1 and z ' 5 from the COMBO-17 survey , 2003, astro-ph/0304072.

[21]  T. Zeeuw Coevolution of Black Holes and Galaxies: Conference Summary , 2003, astro-ph/0303469.

[22]  A. Fontana,et al.  Quasar Evolution Driven by Galaxy Encounters in Hierarchical Structures , 2003, astro-ph/0303332.

[23]  Guenther Hasinger the CDF-S team Formation and Evolution of Supermassive Black Holes in Galactic Centers: Observational Constraints , 2003, astro-ph/0302574.

[24]  A. Merloni Beyond the standard accretion disc model: coupled magnetic disc–corona solutions with a physically motivated viscosity law , 2003, astro-ph/0302074.

[25]  V. Springel,et al.  Black Hole Growth and Activity in a Λ Cold Dark Matter Universe , 2003, astro-ph/0301586.

[26]  W. Brandt,et al.  The Redshift Evolution of the 2-8 keV X-Ray Luminosity Function , 2003, astro-ph/0301231.

[27]  G. Mathez,et al.  Major mergers of haloes, the growth of massive black holes and the evolving luminosity function of quasars , 2002, astro-ph/0212002.

[28]  A. C. Fabian,et al.  X-ray background synthesis: the infrared connection , 2002, astro-ph/0211129.

[29]  W. Brandt,et al.  X-Ray Emission from Radio-Quiet Quasars in the Sloan Digital Sky Survey Early Data Release: The αox Dependence upon Ultraviolet Luminosity , 2002, astro-ph/0211125.

[30]  D. Richstone,et al.  The Cosmic Density of Massive Black Holes from Galaxy Velocity Dispersions , 2002, astro-ph/0210573.

[31]  V. Springel,et al.  An analytical model for the history of cosmic star formation , 2002, astro-ph/0209183.

[32]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[33]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[34]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[35]  G. Zamorani,et al.  Most Supermassive Black Holes Must Be Rapidly Rotating , 2001, astro-ph/0112413.

[36]  A. Cavaliere,et al.  Supermassive Black Holes in Galactic Nuclei , 2001, astro-ph/0110644.

[37]  L. Kewley,et al.  The Chandra Deep Field-South: The 1 Million Second Exposure , 2001, astro-ph/0110452.

[38]  M. Umemura A Radiation-Hydrodynamical Model for Supermassive Black Hole-to-Bulge Mass Relation and Quasar Formation , 2001, astro-ph/0108482.

[39]  J. Dunlop,et al.  On the black hole–bulge mass relation in active and inactive galaxies , 2001, astro-ph/0201081.

[40]  M. Page The fraction of galaxies that contain active nuclei and their accretion rates , 2001, astro-ph/0108389.

[41]  W. Brandt,et al.  The Chandra Deep Field North Survey. VI. The Nature of the Optically Faint X-Ray Source Population , 2001, astro-ph/0107450.

[42]  K. Blundell,et al.  The radio luminosity function from the low-frequency 3CRR, 6CE and 7CRS complete samples , 2000, astro-ph/0010419.

[43]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey — I. The optical luminosity function of quasi-stellar objects , 2000 .

[44]  D. Merritt,et al.  Black Hole Demographics from the M(BH)-sigma Relation , 2000, astro-ph/0009076.

[45]  R. Mushotzky,et al.  The Nature of the Hard X-Ray Background Sources: Optical, Near-Infrared, Submillimeter, and Radio Properties , 2000, astro-ph/0007175.

[46]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[47]  A. Cavaliere,et al.  The Fall of the Quasar Population , 2000, astro-ph/0006194.

[48]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[49]  Scott M. Croom,et al.  The 2dF QSO Redshift Survey - I. The Optical QSO Luminosity Function , 2000 .

[50]  P. Panuzzo,et al.  Joint formation of QSOs and spheroids: QSOs as clocks of star formation in spheroids , 1999, astro-ph/9911304.

[51]  E. Sadler,et al.  Radio Sources in the 2dF Galaxy Redshift Survey I. Radio Source Populations , 1999, Publications of the Astronomical Society of Australia.

[52]  A. Fabian THE OBSCURED GROWTH OF MASSIVE BLACK HOLES , 1999, astro-ph/9908064.

[53]  P. Salucci,et al.  Joint cosmological formation of QSOs and bulge-dominated galaxies , 1999, astro-ph/9907095.

[54]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[55]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[56]  I. O. Astronomy,et al.  The distribution of supermassive black holes in the nuclei of nearby galaxies , 1999, astro-ph/9902223.

[57]  A. Fabian,et al.  The mass density in black holes inferred from the X-ray background , 1999, astro-ph/9901121.

[58]  P. Salucci,et al.  Mass function of dormant black holes and the evolution of active galactic nuclei , 1998, astro-ph/9811102.

[59]  Z. Haiman,et al.  On the Cosmological Evolution of the Luminosity Function and the Accretion Rate of Quasars , 1998, astro-ph/9810426.

[60]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[61]  S. Teukolsky,et al.  Black Holes , 1998, gr-qc/9808035.

[62]  M. Rees,et al.  High-redshift galaxies, their active nuclei and central black holes , 1997, astro-ph/9712259.

[63]  Z. Haiman,et al.  Observational Signatures of the First Quasars , 1997, astro-ph/9710208.

[64]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[65]  J. Dunlop Cosmic Star-Formation History, as Traced by Radio Source Evolution , 1997, astro-ph/9704294.

[66]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[67]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[68]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[69]  J. Huchra,et al.  The Luminosity function for different morphological types in the CfA redshift survey , 1994 .

[70]  M. Rees,et al.  The formation of nuclei in newly formed galaxies and the evolution of the quasar population , 1993 .

[71]  R. Blandford,et al.  Quasar evolution and the growth of black holes , 1992 .

[72]  J. Dunlop,et al.  The redshift cut-off in the luminosity function of radio galaxies and quasars. , 1990 .

[73]  A. Laor Massive thin accretion discs. III, Comparison with the observations , 1990 .

[74]  M. Malkan The ultraviolet excess of luminous quasars. II: Evidence for massive accretion disks , 1983 .

[75]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[76]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[77]  Silvano Molendi,et al.  The HELLAS2XMM 1dF Survey: On the Nature of High X-Ray/Optical Flux Sources , 2004 .

[78]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003 .

[79]  Peter Sollich,et al.  AIP CONF PROC , 2001 .

[80]  Sergey V. Buldyrev,et al.  ApJ, in press , 1999 .

[81]  M. Bremer,et al.  Observational Cosmology with the New Radio Surveys , 1998 .

[82]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[83]  E. Phinney,et al.  Ion-supported tori and the origin of radio jets , 1982, Nature.