Spectral methods for nonlinear functionals and functional differential equations

We present a rigorous convergence analysis for cylindrical approximations of nonlinear functionals, functional derivatives, and functional differential equations (FDEs). The purpose of this analysis is twofold: first, we prove that continuous nonlinear functionals, functional derivatives and FDEs can be approximated uniformly on any compact subset of a real separable Hilbert space by high-dimensional multivariate functions and high-dimensional partial differential equations (PDEs), respectively. Second, we show that the convergence rate of such functional approximations can be exponential, depending on the regularity of the functional (in particular its Frechet differentiability), and its domain. We also provide necessary and sufficient conditions for consistency, stability and convergence of functional approximations to linear FDEs. These results open the possibility to utilize numerical techniques for high-dimensional model representation such as deep neural networks and numerical tensor methods to approximate nonlinear functionals in terms of high-dimensional functions, and compute approximate solutions to FDEs by solving high-dimensional PDEs. Numerical demonstrations are presented and discussed for prototype nonlinear functionals in the space of square-integrable functions, and for an initial value problem involving a linear FDE.

[1]  R. J. Crewther,et al.  Introduction to quantum field theory , 1995, hep-th/9505152.

[2]  R. Seiringer The Excitation Spectrum for Weakly Interacting Bosons , 2010, 1008.5349.

[3]  I. Ventura Theory of Superfluidity , 1979 .

[4]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[5]  Marcel Abendroth,et al.  Quantum Field Theory And Critical Phenomena , 2016 .

[6]  C. Dopazo,et al.  Functional formulation of nonisothermal turbulent reactive flows , 1974 .

[7]  A. V. Skorohod,et al.  Integration in Hilbert Space , 1974 .

[8]  A. Krall Applied Analysis , 1986 .

[9]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[10]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[11]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[12]  K. Musiał Radon-Nikodym theorem for Banach space valued measures , 1976 .

[13]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[14]  Stanley Osher,et al.  Unnormalized optimal transport , 2019, J. Comput. Phys..

[15]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[16]  Phil Howlett,et al.  Computational methods for modelling of nonlinear systems , 2007 .

[17]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[18]  I. I. Gikhman,et al.  The Theory of Stochastic Processes III , 1979 .

[19]  P. M. Prenter A Weierstrass theorem for real, separable Hilbert spaces , 1970 .

[20]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[21]  Wotao Yin,et al.  Algorithm for Hamilton–Jacobi Equations in Density Space Via a Generalized Hopf Formula , 2018, J. Sci. Comput..

[22]  N. Aronszajn,et al.  Differentiability of Lipschitzian mappings between Banach spaces , 1976 .

[23]  Vito Volterra,et al.  Theory of Functionals and of Integral and Integro-Differential Equations , 2005 .

[24]  A. Bukhvalov Integral representation of linear operators , 1978 .

[25]  Daniel M. Tartakovsky,et al.  Parallel tensor methods for high-dimensional linear PDEs , 2018, J. Comput. Phys..

[26]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[27]  George E. Karniadakis,et al.  Hidden physics models: Machine learning of nonlinear partial differential equations , 2017, J. Comput. Phys..

[28]  Paris Perdikaris,et al.  Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data , 2019, J. Comput. Phys..

[29]  Valeriĭ Isaakovich Kli︠a︡t︠s︡kin Dynamics of stochastic systems , 2005 .

[30]  K. Kadlec,et al.  Stochastic Evolution Equations , 2013 .

[31]  Paul C. Martin,et al.  Statistical Dynamics of Classical Systems , 1973 .

[32]  D. Venturi Conjugate flow action functionals , 2011, 1110.2968.

[33]  A. Máté First order partial differential equations ∗ , 2011 .

[34]  R. Aris First-order partial differential equations , 1987 .

[35]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[36]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[37]  D Venturi,et al.  Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  R. Bartle,et al.  The preservation of convergence of measurable functions under composition , 1961 .

[39]  H. N. Shapiro,et al.  INTEGRATION OVER HILBERT SPACE AND OUTER EXTENSIONS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[40]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[41]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[42]  E Weinan,et al.  A mean-field optimal control formulation of deep learning , 2018, Research in the Mathematical Sciences.

[43]  Vasile I Istrăţescu A Weierstrass theorem for real Banach spaces , 1977 .

[44]  Heyrim Cho,et al.  Numerical Methods for High-Dimensional Kinetic Equations , 2017 .

[45]  Functional integration on spaces of connections , 1995, q-alg/9507023.

[46]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[47]  D. Venturi The Numerical Approximation of Nonlinear Functionals and Functional Differential Equations , 2016, 1604.05250.

[48]  M. Nashed Differentiability and Related Properties of Nonlinear Operators: Some Aspects of the Role of Differentials in Nonlinear Functional Analysis , 1971 .

[49]  F. Browder Nonlinear functional analysis , 1970 .

[50]  Fox,et al.  Functional-calculus approach to stochastic differential equations. , 1986, Physical review. A, General physics.

[51]  Daniel M. Tartakovsky,et al.  Exact PDF equations and closure approximations for advective-reactive transport , 2013, J. Comput. Phys..

[52]  N. Bogolyubov On the theory of superfluidity , 1947 .

[53]  Reinhold Schneider,et al.  Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..

[54]  H. Trotter Approximation of semi-groups of operators , 1958 .

[55]  Lin Lin,et al.  Projection-Based Embedding Theory for Solving Kohn-Sham Density Functional Theory , 2018, Multiscale Model. Simul..

[56]  Daniele Venturi,et al.  Dynamically orthogonal tensor methods for high-dimensional nonlinear PDEs , 2019, J. Comput. Phys..

[57]  P. Mankiewicz,et al.  On the differentiability of Lipschitz mappings in Fréchet spaces , 1973 .

[58]  W. Mccomb,et al.  The physics of fluid turbulence. , 1990 .

[59]  D. Jackson,et al.  fourier series and orthogonal polynomials , 1943, The Mathematical Gazette.

[60]  Daniele Venturi,et al.  Stability analysis of hierarchical tensor methods for time-dependent PDEs , 2019, J. Comput. Phys..

[61]  François Delarue,et al.  Probabilistic Theory of Mean Field Games with Applications I: Mean Field FBSDEs, Control, and Games , 2018 .

[62]  K. Ohkitani Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling. , 2020, Physical review. E.

[63]  Joram Lindenstrauss,et al.  On Fréchet differentiability of Lipschitz maps between Banach spaces , 2004, math/0402160.

[64]  M. Campiti,et al.  Rate of Convergence in Trotter’s Approximation Theorem , 2008 .

[65]  C. Neugebauer Strong differentiability of Lipschitz functions , 1978 .

[66]  G. Karniadakis,et al.  A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[68]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[69]  R. Jensen,et al.  Functional integral approach to classical statistical dynamics , 1981 .

[70]  Daniele Venturi,et al.  Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder , 2008, Journal of Fluid Mechanics.

[71]  Daniele Venturi,et al.  Wick–Malliavin approximation to nonlinear stochastic partial differential equations: analysis and simulations , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  G. Rosen Functional Calculus Theory for Incompressible Fluid Turbulence , 1971 .

[73]  Levon Nurbekyan,et al.  A machine learning framework for solving high-dimensional mean field game and mean field control problems , 2020, Proceedings of the National Academy of Sciences.

[74]  E. Hopf Statistical Hydromechanics and Functional Calculus , 1952 .

[75]  Bülent Karasözen,et al.  Approximation of Abstract Differential Equations , 2004 .

[76]  Reinhold Schneider,et al.  Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.

[77]  R Phythian,et al.  The functional formalism of classical statistical dynamics , 1977 .

[78]  Daniele Venturi,et al.  Stochastic bifurcation analysis of Rayleigh–Bénard convection , 2010, Journal of Fluid Mechanics.

[79]  Heyrim Cho,et al.  Statistical analysis and simulation of random shocks in stochastic Burgers equation , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[80]  A. R. Schep Compactness properties of an operator which imply that it is an integral operator , 1981 .

[81]  A. Germani,et al.  A Weierstrass-like theorem for real separable Hilbert spaces☆ , 1981 .

[82]  B. Rozovskii,et al.  Stochastic evolution equations , 1981 .

[83]  Daniele Venturi,et al.  Data-driven closures for stochastic dynamical systems , 2018, J. Comput. Phys..