Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse

[1]  Mark J. Wall,et al.  Development of Action Potential‐dependent and Independent Spontaneous GABAA Receptor‐mediated Currents in Granule Cells of Postnatal Rat Cerebellum , 1997, The European journal of neuroscience.

[2]  S. Cull-Candy,et al.  Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. , 1996, The Journal of physiology.

[3]  P Heggelund,et al.  Quantal properties of spontaneous EPSCs in neurones of the guinea‐pig dorsal lateral geniculate nucleus. , 1996, The Journal of physiology.

[4]  T. Valiante,et al.  Sr2+ and quantal events at excitatory synapses between mouse hippocampal neurons in culture. , 1996, The Journal of physiology.

[5]  R. Silver,et al.  Non‐NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. , 1996, The Journal of physiology.

[6]  K. Appenteng,et al.  Multimodal distribution of amplitudes of miniature and spontaneous EPSPs recorded in rat trigeminal motoneurones. , 1996, The Journal of physiology.

[7]  Naiphinich Kotchabhakdi,et al.  Developmental Changes of Inhibitory Synaptic Currents in Cerebellar Granule Neurons: Role of GABAA Receptor α6 Subunit , 1996, The Journal of Neuroscience.

[8]  J. Clements Transmitter timecourse in the synaptic cleft: its role in central synaptic function , 1996, Trends in Neurosciences.

[9]  F. Edwards,et al.  Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. , 1995, Physiological reviews.

[10]  B. Walmsley Interpretation of ‘quantal’ peaks in distributions of evoked synaptic transmission at central synapses , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[11]  M. Bennett The origin of Gaussian distributions of synaptic potentials , 1995, Progress in Neurobiology.

[12]  R. Tsien,et al.  Properties of synaptic transmission at single hippocampal synaptic boutons , 1995, Nature.

[13]  E. D’Angelo,et al.  Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. , 1995, The Journal of physiology.

[14]  C. Stevens,et al.  Quantal analysis of EPSCs recorded from small numbers of synapses in hippocampal cultures. , 1995, Journal of neurophysiology.

[15]  P Heggelund,et al.  The quantal size at retinogeniculate synapses determined from spontaneous and evoked EPSCs in guinea‐pig thalamic slices. , 1994, The Journal of physiology.

[16]  John M. Bekkers,et al.  Quantal analysis of synaptic transmission in the central nervous system , 1994, Current Opinion in Neurobiology.

[17]  G. Major,et al.  Quantal analysis of the synaptic excitation of CA1 hippocampal pyramidal cells. , 1994, Advances in second messenger and phosphoprotein research.

[18]  B. Sakmann,et al.  Quantal analysis of excitatory postsynaptic currents at the hippocampal mossy fiber-CA3 pyramidal cell synapse. , 1994, Advances in second messenger and phosphoprotein research.

[19]  L. Stjärne Molecular and cellular mechanisms of neurotransmitter release , 1994 .

[20]  B. Sakmann,et al.  Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. , 1993, The Journal of physiology.

[21]  D. Faber,et al.  Synaptic noise and multiquantal release at dendritic synapses. , 1993, Journal of neurophysiology.

[22]  R. Silver,et al.  Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse , 1993, Neuron.

[23]  D Ulrich,et al.  Miniature excitatory synaptic currents corrected for dendritic cable properties reveal quantal size and variance. , 1993, Journal of neurophysiology.

[24]  R. Malinow,et al.  Direct measurement of quantal changes underlying long-term potentiation in CA1 hippocampus , 1992, Neuron.

[25]  J. Feldman,et al.  Quantal synaptic transmission in phrenic motor nucleus. , 1992, Journal of neurophysiology.

[26]  R. Nicoll,et al.  Long-term potentiation is associated with increases in quantal content and quantal amplitude , 1992, Nature.

[27]  R. Grantyn,et al.  Unitary, quantal and miniature gaba-activated synaptic chloride currents in cultured neurons from the rat superior colliculus , 1992, Neuroscience.

[28]  R. Silver,et al.  Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ , 1992, Nature.

[29]  Y. Liu,et al.  The temperature dependence of some kinetic and conductance properties of acetylcholine receptor channels. , 1991, Biochimica et biophysica acta.

[30]  K. Stratford,et al.  Quantal analysis of excitatory synaptic action and depression in hippocampal slices , 1991, Nature.

[31]  S. Palay,et al.  The Fine Structure of the Nervous System: Neurons and Their Supporting Cells , 1991 .

[32]  B Sakmann,et al.  Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch‐clamp study. , 1990, The Journal of physiology.

[33]  N. Ropert,et al.  Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. , 1990, The Journal of physiology.

[34]  I. Cohen,et al.  Temperature effects on spontaneous and evoked quantal size at the frog neuromuscular junction , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  C. Mason,et al.  Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  E. Grossman,et al.  A quantitative electron microscope study of desmosomes and hemi-desmosomes in vervet monkey oral mucosa. , 1983, Journal of periodontal research.

[37]  J. Hámori,et al.  Differentiation of cerebellar mossy fiber synapses in the rat: A quantitative electron microscope study , 1983, The Journal of comparative neurology.

[38]  W. Kloot,et al.  Effects of low temperature and terminal membrane potential on quantal size at frog neuromuscular junction , 1983, The Journal of physiology.

[39]  J. Bornstein Spontaneous multiquantal release at synapses in guinea‐pig hypogastric ganglia: evidence that release can occur in bursts. , 1978, The Journal of physiology.

[40]  S. Palay,et al.  Cerebellar Cortex: Cytology and Organization , 1974 .

[41]  S. Palay,et al.  The Mossy Fibers , 1974 .

[42]  C. Stevens,et al.  Quantal independence and uniformity of presynaptic release kinetics at the frog neuromuscular junction , 1972, The Journal of physiology.

[43]  U. Meiri,et al.  Activation of transmitter release by strontium and calcium ions at the neuromuscular junction , 1971, The Journal of physiology.

[44]  S. W. Kuffler,et al.  Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  V. Tennyson The Fine Structure of the Nervous System. , 1970 .

[46]  D E Hillman,et al.  The primate cerebellar cortex: a Golgi and electron microscopic study. , 1967, Progress in brain research.

[47]  B. Katz Nerve, Muscle and Synapse , 1966 .

[48]  B. Katz,et al.  The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  G. Pilar,et al.  Quantal components of the synaptic potential in the ciliary ganglion of the chick , 1964, The Journal of physiology.

[50]  B. L. Ginsborg,et al.  Spontaneous synaptic activity in sympathetic ganglion cells of the frog , 1963, The Journal of physiology.

[51]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[52]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.