Entropy-Driven Parameter Control for Evolutionary Algorithms

Every evolutionary algorithm needs to address two important facets: exploration and exploitation of a search space. Evolutionary search must combine exploration of the new regions of the space with exploitation of the potential solutions already identified. The necessity of balancing exploration with exploitation needs to be intelligent. This paper introduces an entropy-driven parameter control approach for exploring and exploiting evolutionary algorithms. Entropy represents the amount of disorder of the population, where an increase in entropy represents an increase in diversity. Four kinds of entropy to express diversity and to control the entropy-driven approach are discussed. The experimental results of a unimodal, a multimodal with many local minima, and a multimodal with only a few local minima functions show that the entropy-driven approach achieves good and explicit balance between exploration and exploitation.

[1]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Thomas Bäck,et al.  Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms , 1994, International Conference on Evolutionary Computation.

[3]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[4]  Wei Lu,et al.  A New Evolutionary Algorithm for Determining the Optimal Number of Clusters , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[5]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[6]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[7]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[8]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[9]  Rasmus K. Ursem,et al.  Diversity-Guided Evolutionary Algorithms , 2002, PPSN.

[10]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[11]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[12]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature — PPSN VII , 2002, Lecture Notes in Computer Science.

[13]  Graham Kendall,et al.  Advanced Population Diversity Measures in Genetic Programming , 2002, PPSN.

[14]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[15]  A. E. Eiben,et al.  On Evolutionary Exploration and Exploitation , 1998, Fundam. Informaticae.

[16]  Marjan Mernik,et al.  PARAMETER CONTROL IN EVOLUTIONARY ALGORITHMS BY DOMAIN-SPECIFIC SCRIPTING LANGUAGE PPCEA , 2004 .

[17]  Chris Watkins,et al.  Learning from delayed rewards , 1989 .

[18]  李幼升,et al.  Ph , 1989 .

[19]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[20]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[21]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..