On Parameter Interpretability of Phenomenological-Based Semiphysical Models
暂无分享,去创建一个
Jose Garcia-Tirado | Hernan Alvarez | Rafael Muñoz-Tamayo | Laura Lema-Perez | R. Muñoz-Tamayo | J. Garcia-Tirado | H. Alvarez | Laura Lema-Pérez
[1] Ted Poston,et al. Explanation and Justification , 2014 .
[2] G F Cooper,et al. The use of misclassification costs to learn rule-based decision support models for cost-effective hospital admission strategies. , 1995, Proceedings. Symposium on Computer Applications in Medical Care.
[3] Bart Baesens,et al. An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models , 2011, Decis. Support Syst..
[4] Chia-Feng Juang,et al. Data-Driven Interval Type-2 Neural Fuzzy System With High Learning Accuracy and Improved Model Interpretability , 2013, IEEE Transactions on Cybernetics.
[5] T. Dobre,et al. Chemical engineering : modelling, simulation and similitude , 2007 .
[6] R. Muñoz-Tamayo,et al. Hydrolysis of β-casein by the cell-envelope-located PI-type protease of Lactococcus lactis: A modelling approach , 2011 .
[7] H. Álvarez,et al. A phenomenologically based material flow model for friction stir welding , 2016 .
[8] Diran Basmadjian,et al. The Art of Modeling in Science and Engineering with Mathematica , 1999 .
[9] Thomas Richardson,et al. Interpretable Boosted Naïve Bayes Classification , 1998, KDD.
[10] Zachary Chase Lipton. The mythos of model interpretability , 2016, ACM Queue.
[11] Michael J. Chappell,et al. Structural identifiability and indistinguishability analyses of the Minimal Model and a Euglycemic Hyperinsulinemic Clamp model for glucose-insulin dynamics , 2011, Comput. Methods Programs Biomed..
[12] Been Kim,et al. Interactive and interpretable machine learning models for human machine collaboration , 2015 .
[13] Johannes Gehrke,et al. Accurate intelligible models with pairwise interactions , 2013, KDD.
[14] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[15] J. Banga,et al. Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.
[16] Jakob F. Maier,et al. Model granularity and related concepts , 2016 .
[17] D Sauvant,et al. Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling? , 2017, Animal : an international journal of animal bioscience.
[18] Héctor Antonio Botero Castro,et al. Enfrentando el modelado de bioprocesos: una revisión de las metodologías de modelado , 2017 .
[19] Ian T. Cameron,et al. Process Modelling and Model Analysis , 2013 .
[20] Eric Walter,et al. Identification of Parametric Models: from Experimental Data , 1997 .
[21] Peter L. Bonate,et al. The Art of Modeling , 2011 .
[22] Johannes Gehrke,et al. Intelligible models for classification and regression , 2012, KDD.
[23] Siddhartha S. Srinivasa,et al. Legibility and predictability of robot motion , 2013, 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
[24] R. Tibshirani,et al. Generalized Additive Models: Some Applications , 1987 .
[25] Been Kim,et al. Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.
[26] Franco Turini,et al. A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..
[27] Bill Curtis,et al. Process modeling , 1992, CACM.
[28] Tsuyoshi Murata,et al. {m , 1934, ACML.
[29] Hernan Alvarez,et al. Metodología para la Obtención de Modelos Semifísicos de Base Fenomenológica Aplicada a una Sulfitadora de Jugo de Caña de Azúcar , 2009 .
[30] Juan Contreras Montes,et al. Data-Driven Identification Algorithms for Automatic Determination of Interpretable Fuzzy Models , 2007 .
[31] H. Pohjanpalo. System identifiability based on the power series expansion of the solution , 1978 .
[32] William L. Luyben,et al. Process Modeling, Simulation and Control for Chemical Engineers , 1973 .
[33] Maria Pia Saccomani,et al. DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..
[34] Eva Balsa-Canto,et al. Bioinformatics Applications Note Systems Biology Genssi: a Software Toolbox for Structural Identifiability Analysis of Biological Models , 2022 .