An introduction to dispersive interactions

Dispersive forces are a kind of van der Waals intermolecular force which could only be fully understood with the establishment of quantum mechanics and, in particular, of quantum electrodynamics. In this pedagogical paper, we introduce the subject in a more elementary approach, aiming at students with basic knowledge of quantum mechanics. We perform original calculations using a semiclassical method by the name of the fluctuating-dipole method, and focus primarily on the interaction of atoms with macroscopic bodies, in particular with a spherical, less usual geometry.

[1]  F. Toigo,et al.  van der Waals interaction between a point particle and a metallic surface. I. Theory , 1982 .

[2]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[3]  B. Holstein The van der Waals interaction , 2001 .

[4]  Cho,et al.  Measurement of the Casimir-Polder force. , 1993, Physical review letters.

[5]  H. Casimir,et al.  Influence of Retardation on the London–van der Waals Forces , 1946, Nature.

[6]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Langbein Theory of Van der Waals Attraction , 1974 .

[8]  S. Buhmann,et al.  The van der Waals energy of atomic systems near absorbing and dispersing bodies , 2003, quant-ph/0303152.

[9]  Alexander Davydov,et al.  Quantum Mechanics , 2019, Stars and Stellar Processes.

[10]  C. Farina,et al.  Subtleties in energy calculations in the image method , 2009, 0903.4497.

[11]  C. Farina,et al.  A simple model for the nonretarded dispersive force between an electrically polarizable atom and a magnetically polarizable one , 2002 .

[12]  J. Lennard-jones,et al.  Processes of adsorption and diffusion on solid surfaces , 1932 .

[13]  P. Kusch,et al.  Interaction between a Neutral Atomic or Molecular Beam and a Conducting Surface , 1969 .

[14]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[15]  Courtois,et al.  Measurement of the van der Waals Force in an Atomic Mirror. , 1996, Physical review letters.

[16]  D. H. Everett Springer Tracts in Modern Physics Vol 72: Theory of van der Waals Attraction , 1975 .

[17]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[18]  F. C. Santos,et al.  The electrostatic field of a point charge and an electrical dipole in the presence of a conducting sphere , 2004, physics/0405122.

[19]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[20]  W. Jhe,et al.  Casimir-Polder energy shift of an atom near a metallic sphere , 1995 .

[21]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[22]  C. Farina,et al.  A simple way of understanding the nonadditivity of van der Waals dispersion forces , 1999 .

[23]  C. Joachain,et al.  Quantum Mechanics , 2000 .

[24]  Peter W. Milonni,et al.  The Quantum Vacuum: An Introduction to Quantum Electrodynamics , 1993 .

[25]  A. Salam Comment on “A simple model for the nonretarded dispersive force between an electrically polarizable atom and a magnetically polarizable one,” by C. Farina, F. C. Santos, and A. C. Tort [Am. J. Phys. 70 (4), 421–423 (2002)] , 2003 .

[26]  A. Aspect,et al.  Measurement of the atom-wall interaction: from London to Casimir-Polder , 2002 .