High Performance Room Temperature Rectenna IR Detectors Using Graphene Geometric Diodes

High performance rectenna detectors that operate at room temperature have been developed for the frequency range of terahertz to infrared (IR). We formed IR rectennas by coupling bowtie antennas to ultrafast diodes, called geometric diodes. Geometric diodes rely on geometric asymmetry and the long charge carrier mean-free path length of graphene to provide asymmetric current-voltage characteristics. The planar structure of the geometric diode provides the femtosecond RC time constant necessary for detection of IR frequencies. Fabricated IR rectennas using graphene geometric diodes have shown strong optical response to 28 THz CO2 laser illumination at room temperature. The detectivity (D*) and the noise equivalent power (NEP) of the IR rectennas are calculated to be on the order of 108 cm Hz1/2W-1 and 10-9 W Hz-1/2, respectively. Simulations show that with some improvement room temperature rectennas using graphene geometric diodes are able to achieve an NEP value as low as 10-11 W Hz-1/2.

[1]  S. Tadigadapa,et al.  Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  A. Rogalski Infrared Detectors, Second Edition , 2010 .

[3]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[4]  Sachit Grover,et al.  Diodes for Optical Rectennas , 2011 .

[5]  H. Rothuizen,et al.  Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation , 1998 .

[6]  E. Barr,et al.  The infrared pioneers—III. Samuel Pierpont Langley , 1963 .

[7]  Gereon Meyer Advanced Microsystems for Automotive Applications 2012 , 2012 .

[8]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[9]  L. DiCarlo,et al.  Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene , 2007, Science.

[10]  Reza Asgari,et al.  Observation of Plasmarons in Quasi-Freestanding Doped Graphene , 2010, Science.

[11]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[12]  Sachit Grover,et al.  Optical rectenna solar cells using graphene geometric diodes , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[13]  J. J. Yon,et al.  Infrared Microbolometer Sensors and Their Application in Automotive Safety , 2003 .

[14]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[15]  T. W. Case Notes on the Change of Resistance of Certain Substances in Light , 1917 .

[16]  Aydin Babakhani,et al.  In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. , 2013, Nature nanotechnology.

[17]  O. Nayfeh Radio-Frequency Transistors Using Chemical-Vapor-Deposited Monolayer Graphene: Performance, Doping, and Transport Effects , 2011, IEEE Transactions on Electron Devices.

[18]  Isa Kocakarin,et al.  Glass Superstrate Nanoantennas for Infrared Energy Harvesting Applications , 2013 .

[19]  Film-type infrared photoconductors , 2004 .

[20]  J. S. Gomez-Diaz,et al.  Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets , 2012 .

[21]  F. J. González,et al.  Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .

[22]  S. Louie,et al.  Electron-phonon interactions in graphene, bilayer graphene, and graphite. , 2008, Nano letters.

[23]  Manijeh Razeghi Current status and future trends of infrared detectors , 1998 .

[24]  William Herschel,et al.  Experiments on the Refrangibility of the Invisible Rays of the Sun. By William Herschel, LL. D. F. R. S. , 1800 .

[25]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[26]  E. Pop,et al.  Mobility and Saturation Velocity in Graphene on SiO2 , 2010, 1005.2711.

[27]  Hyun-Joon Shin,et al.  Characterization of uncooled bolometer with vanadium tungsten oxide infrared active layer , 2005 .

[28]  G. Moddel,et al.  Traveling-Wave Metal/Insulator/Metal Diodes for Improved Infrared Bandwidth and Efficiency of Antenna-Coupled Rectifiers , 2010, IEEE Transactions on Nanotechnology.

[29]  Aimin Song,et al.  Electron ratchet effect in semiconductor devices and artificial materials with broken centrosymmetry , 2002 .

[30]  Mircea Dragoman Graphene nanoelectronics for high-frequency applications , 2013, Microtechnologies for the New Millennium.

[31]  S. Joshi,et al.  Ultrahigh speed graphene diode with reversible polarity , 2012 .

[32]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[33]  Sachit Grover,et al.  Graphene geometric diodes for terahertz rectennas , 2013 .

[34]  Waldemar Gawron,et al.  Uncooled photovoltaic Hg1-xCdxTe LWIR detectors , 2000, SPIE Optics + Photonics.

[35]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[36]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[37]  William Herschel XIV. Experiments on the refrangibility of the invisible rays of the sun , 1800 .

[38]  A. Rogalski Infrared detectors: an overview , 2002 .

[39]  Mircea Dragoman,et al.  Geometrically induced rectification in two-dimensional ballistic nanodevices , 2013 .

[40]  Stefano Roddaro,et al.  Investigation of the influence on graphene by using electron-beam and photo-lithography , 2011 .

[41]  A. Rogalski Infrared detectors: status and trends , 2003 .

[42]  T. K. Gustafson,et al.  Coupling characteristics of thin‐film metal‐oxide‐metal diodes at 10.6 μ , 1975 .

[43]  D. Pochic,et al.  Far Infrared Imaging Sensor for Mass Production of Night Vision and Pedestrian Detection Systems , 2012 .

[44]  G. Moddel,et al.  Applicability of Metal/Insulator/Metal (MIM) Diodes to Solar Rectennas , 2011, IEEE Journal of Photovoltaics.

[45]  Ali Javan,et al.  The MOM tunneling diode - Theoretical estimate of its performance at microwave and infrared frequencies , 1978 .

[46]  Sachit Grover,et al.  Geometric Diodes for Optical Rectennas , 2013 .

[47]  K. Emtsev,et al.  Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets , 2008 .

[48]  P. Richards Bolometers for infrared and millimeter waves , 1994 .

[49]  Glenn D. Boreman,et al.  Detection mechanisms in microstrip dipole antenna-coupled infrared detectors , 2003 .