A semi-concurrent multiscale approach for modeling damage in nanocomposites

Abstract The paper presents an effective implementation of a semi-concurrent multiscale method in the commercial finite element software package ABAQUS. The method is applied to the pre-localized damage initiation and propagation in the fully exfoliated clay/epoxy nanocomposite. The obtained results of the proposed method is also compared with the hierarchical multiscale approach. This method can be easily used to get a better understanding of damage mechanism in the nanocomposite materials in order to improve the constitutive models and to support the future design of those materials.

[1]  A. Khatibi,et al.  An experimental study on clay/epoxy nanocomposites produced in a centrifuge , 2007 .

[2]  René de Borst,et al.  Computational homogenization for adhesive and cohesive failure in quasi‐brittle solids , 2010 .

[3]  A. Kinloch,et al.  Erratum to: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles , 2011 .

[4]  I. Sevostianov,et al.  Effect of interphase layers on the overall elastic and conductive properties of matrix composites. Applications to nanosize inclusion , 2007 .

[5]  Jacob Fish,et al.  Multiscale enrichment based on partition of unity , 2005 .

[6]  M. Quaresimin,et al.  A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids , 2012 .

[7]  M. Quaresimin,et al.  Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: A multiscale analytical model , 2013 .

[8]  Timon Rabczuk,et al.  A computational library for multiscale modeling of material failure , 2013, Computational Mechanics.

[9]  Ted Belytschko,et al.  Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .

[10]  Ardeshir H. Tehrani,et al.  Mesomechanical Modeling of Polymer/Clay Nanocomposites Using a Viscoelastic-Viscoplastic-Viscodamage Constitutive Model , 2011 .

[11]  M. Fermeglia,et al.  A complete multiscale modelling approach for polymer-clay nanocomposites. , 2009, Chemistry.

[12]  Donald F. Adams,et al.  Analysis of Composite Materials , 2002 .

[13]  J. Williams Particle toughening of polymers by plastic void growth , 2010 .

[14]  Olivier Allix,et al.  Nonlinear localization strategies for domain decomposition methods: Application to post-buckling analyses , 2007 .

[15]  Jean-Louis Chaboche,et al.  ASPECT PHENOMENOLOGIQUE DE LA RUPTURE PAR ENDOMMAGEMENT , 1978 .

[16]  Rodney Hill,et al.  The essential structure of constitutive laws for metal composites and polycrystals , 1967 .

[17]  D. Hui,et al.  Epoxy clay nanocomposites ― processing, properties and applications: A review , 2013 .

[18]  Luc Dormieux,et al.  Hashin–Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects , 2010 .

[19]  T. Rabczuk,et al.  On the coupling of a commercial finite element package with LAMMPS for multiscale modeling of materials , 2012 .

[20]  B. Lauke Effect of Particle Size on Fracture Toughness of Polymer Composites , 2008 .

[21]  Saeed Ziaei-Rad,et al.  On the experimental and numerical investigation of clay/epoxy nanocomposites , 2012 .

[22]  T. Rabczuk,et al.  Molecular dynamics/xfem coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture , 2013 .

[23]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[24]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[25]  F. Leckie A course on damage mechanics , 1998 .

[26]  J. Lee,et al.  Temperature effects on the fracture behavior and tensile properties of silane-treated clay/epoxy nanocomposites , 2010 .

[27]  Leon Mishnaevsky,et al.  Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept , 2011 .

[28]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[29]  V Varvara Kouznetsova,et al.  Computational homogenization for the multi-scale analysis of multi-phase materials , 2002 .

[30]  J. Y. Park,et al.  Mathematical Modeling of Nanocomposite Properties Considering Nanoclay/Epoxy Debonding , 2010 .

[31]  Ted Belytschko,et al.  A multiscale projection method for macro/microcrack simulations , 2007 .

[32]  J. Chia,et al.  Finite Element Modelling Epoxy/Clay Nanocomposites , 2007 .

[33]  L. J. Sluys,et al.  Coupled-volume multi-scale modelling of quasi-brittle material , 2008 .

[34]  A. Khatibi,et al.  Comprehensive investigation on hierarchical multiscale homogenization using Representative Volume Element for piezoelectric nanocomposites , 2011 .

[35]  B. Cotterell,et al.  Modelling stiffness of polymer/clay nanocomposites , 2007 .

[36]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[37]  Y. Mai,et al.  Predictions of stiffness and strength of nylon 6/MMT nanocomposites with an improved staggered model , 2008 .

[38]  Maurizio Fermeglia,et al.  To the nanoscale, and beyond!: Multiscale molecular modeling of polymer-clay nanocomposites , 2007 .

[39]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[40]  Ted Belytschko,et al.  Coarse‐graining of multiscale crack propagation , 2010 .

[41]  B. Lauke Effect of particle size distribution on debonding energy and crack resistance of polymer composites , 2013 .

[42]  Ted Belytschko,et al.  Multiscale aggregating discontinuities: A method for circumventing loss of material stability , 2008 .

[43]  Jiann-Wen Ju,et al.  A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites , 2001 .

[44]  N. Sheng Multiscale micromechanical modeling of the thermal/mechanical properties of polymer/clay nanocomposites , 2006 .

[45]  Jacob Fish,et al.  Multiscale finite element method for a locally nonperiodic heterogeneous medium , 1993 .

[46]  M. Quaresimin,et al.  Influence of the interphase zone on the nanoparticle debonding stress , 2011 .

[47]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[48]  A. Yee,et al.  Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms , 2005 .

[49]  M. Boyce,et al.  Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle , 2004 .

[50]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[51]  Mark F. Horstemeyer,et al.  Multiscale Modeling: A Review , 2009 .

[52]  Maurizio Fermeglia,et al.  Polymer-clay nanocomposites: a multiscale molecular modeling approach. , 2007, The journal of physical chemistry. B.

[53]  D. Hui,et al.  Mechanism of reinforcement in a nanoclay/polymer composite , 2011 .

[54]  Y. Mai,et al.  Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites , 2008 .

[55]  Laurent Champaney,et al.  A multiscale extended finite element method for crack propagation , 2008 .

[56]  A. Waas,et al.  A closed-form, hierarchical, multi-interphase model for composites—Derivation, verification and application to nanocomposites , 2011 .

[57]  Julien Réthoré,et al.  Energy conservation of atomistic/continuum coupling , 2009 .

[58]  Vinh Phu Nguyen,et al.  Homogenization-based multiscale crack modelling: from micro diffusive damage to macro cracks , 2011 .

[59]  Ever J. Barbero,et al.  A Constitutive Model for Elastic Damage in Fiber-Reinforced PMC Laminae , 2001 .

[60]  K. Masania,et al.  The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles , 2010 .

[61]  G. Marquis,et al.  Micromechanical modeling of nanocomposites considering debonding of reinforcements , 2014 .