Dispersion state of carbon black in polystyrene produced with different dispersion media and its effects on composite rheological properties

[1]  Lixian Song,et al.  Parameterization of silica-filled silicone rubber morphology: A contrast variation SANS and TEM study , 2017 .

[2]  Yihu Song,et al.  Linear rheology of carbon black filled polystyrene , 2017 .

[3]  Richard A. Vaia,et al.  50th Anniversary Perspective: Are Polymer Nanocomposites Practical for Applications? , 2017 .

[4]  Yihu Song,et al.  Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics , 2016 .

[5]  Erkan Senses,et al.  Role of Filler Shape and Connectivity on the Viscoelastic Behavior in Polymer Nanocomposites , 2015 .

[6]  G. Filippone,et al.  A Unifying Approach for the Linear Viscoelasticity of Polymer Nanocomposites , 2012 .

[7]  D. Acierno,et al.  Universal features of the melt elasticity of interacting polymer nanocomposites. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[8]  J. Jestin,et al.  Multiscale characterization of filler dispersion and origins of mechanical reinforcement in model nanocomposites , 2012 .

[9]  Y. Furukawa,et al.  Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8 , 2011 .

[10]  N. Wagner,et al.  Poly(ethylene oxide) (PEO) and poly(vinyl pyrolidone) (PVP) induce different changes in the colloid stability of nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[11]  Markus J. Buehler,et al.  Current issues in research on structure–property relationships in polymer nanocomposites , 2010 .

[12]  C. Zukoski,et al.  Rheology and microstructure of polymer nanocomposite melts: variation of polymer segment-surface interaction. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[13]  D. Acierno,et al.  Viscoelasticity and structure of polystyrene/fumed silica nanocomposites: filler network and hydrodynamic contributions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[14]  C. Zukoski,et al.  Rheology and Microstructure of Entangled Polymer Nanocomposite Melts , 2009 .

[15]  J. Coleman,et al.  Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. , 2009, ACS nano.

[16]  J. Jestin,et al.  Well-Dispersed Fractal Aggregates as Filler in Polymer−Silica Nanocomposites: Long-Range Effects in Rheology , 2009, 0903.5380.

[17]  D. Yamaguchi,et al.  Structure Analyses of Swollen Rubber-Filler Systems by Using Contrast Variation SANS , 2009 .

[18]  C. Zukoski,et al.  Rheology and Microstructure of an Unentangled Polymer Nanocomposite Melt , 2008 .

[19]  A. Fernández-Nieves,et al.  Elasticity and dynamics of particle gels in non-Newtonian melts , 2008 .

[20]  T. Cosgrove,et al.  A small-angle neutron scattering study of adsorbed polymer structure in concentrated colloidal dispersions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[21]  T. Hashimoto,et al.  New Insight into Hierarchical Structures of Carbon Black Dispersed in Polymer Matrices: A Combined Small-Angle Scattering Study , 2008 .

[22]  Dale W. Schaefer,et al.  How Nano Are Nanocomposites , 2007 .

[23]  C. Hansen,et al.  Hansen Solubility Parameters : A User's Handbook, Second Edition , 2007 .

[24]  T. Cosgrove,et al.  Steric interactions between physically adsorbed polymer-coated colloidal particles: soft or hard? , 2007, Langmuir : the ACS journal of surfaces and colloids.

[25]  T. Cosgrove,et al.  Small-angle neutron scattering study of concentrated colloidal dispersions: the electrostatic/steric composite interactions between colloidal particles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[26]  T. Hashimoto,et al.  Structure factors of dispersible units of carbon black filler in rubbers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[27]  C. A. Dreiss,et al.  Small-angle neutron scattering study of concentrated colloidal dispersions: the interparticle interactions between sterically stabilized particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[28]  Sotiris E. Pratsinis,et al.  Structure of Flame-Made Silica Nanoparticles by Ultra-Small-Angle X-ray Scattering , 2004 .

[29]  W. Gleissle,et al.  Validity of the Cox–Merz rule for concentrated suspensions , 2003 .

[30]  L. Cipelletti,et al.  Rideal lecture. Universal features of the fluid to solid transition for attractive colloidal particles. , 2003, Faraday discussions.

[31]  Lynden A. Archer,et al.  Poly(ethylene oxide)/Silica Nanocomposites: Structure and Rheology , 2002 .

[32]  Peter Lindner,et al.  Neutrons, X-rays and light : scattering methods applied to soft condensed matter , 2002 .

[33]  D. Weitz,et al.  Scaling of the viscoelasticity of weakly attractive particles , 2000, Physical review letters.

[34]  F. Ehrburger-Dolle,et al.  Small-Angle X-ray Scattering Study of the Morphology of Carbon Black Mass Fractal Aggregates in Polymeric Composites , 2000 .

[35]  C. Hansen Hansen Solubility Parameters: A User's Handbook , 1999 .

[36]  F. Ehrburger-Dolle,et al.  Small-angle X-ray scattering from carbon blacks: Crossover between the fractal and Porod regimes , 1999 .

[37]  M. Kawaguchi,et al.  Molecular weight dependence of structures and rheological properties for fumed silica suspensions in polystyrene solutions , 1996 .

[38]  Gregory Beaucage,et al.  Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering , 1995 .

[39]  M. Kawaguchi,et al.  Polymer Adsorption Effects on Structures and Rheological Properties of Silica Suspensions , 1995 .

[40]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[41]  W. Russel,et al.  Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction , 1985 .