Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction
暂无分享,去创建一个
C. Brinkmeyer | S. Gerguri | M. Kelm | H. Makimoto | Tina Lin | Lukas Clasen | P. Müller | A. Bejinariu | J. Schmidt | Mehran Babady | D. Glöckner | S. Angendohr | Moritz Höckmann | Athena Assadi-Schmidt | Asuka Makimoto
[1] Akihiro Haga,et al. A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images. , 2020, JACC. Cardiovascular imaging.
[2] Michael G. Endres,et al. Use of Crowd Innovation to Develop an Artificial Intelligence–Based Solution for Radiation Therapy Targeting , 2019, JAMA oncology.
[3] Masoumeh Haghpanahi,et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network , 2019, Nature Medicine.
[4] Nils Strodthoff,et al. Detecting and interpreting myocardial infarction using fully convolutional neural networks , 2018, Physiological measurement.
[5] Daeyoung Kim,et al. ECG arrhythmia classification using a 2-D convolutional neural network , 2018, ArXiv.
[6] Anirban Sarkar,et al. Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).
[7] Atsuto Maki,et al. A systematic study of the class imbalance problem in convolutional neural networks , 2017, Neural Networks.
[8] Abhishek Das,et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).
[9] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[10] Jeffrey M. Hausdorff,et al. Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .
[11] Ralf Bousseljot,et al. Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet , 2009 .