Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction

[1]  Akihiro Haga,et al.  A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images. , 2020, JACC. Cardiovascular imaging.

[2]  Michael G. Endres,et al.  Use of Crowd Innovation to Develop an Artificial Intelligence–Based Solution for Radiation Therapy Targeting , 2019, JAMA oncology.

[3]  Masoumeh Haghpanahi,et al.  Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network , 2019, Nature Medicine.

[4]  Nils Strodthoff,et al.  Detecting and interpreting myocardial infarction using fully convolutional neural networks , 2018, Physiological measurement.

[5]  Daeyoung Kim,et al.  ECG arrhythmia classification using a 2-D convolutional neural network , 2018, ArXiv.

[6]  Anirban Sarkar,et al.  Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[7]  Atsuto Maki,et al.  A systematic study of the class imbalance problem in convolutional neural networks , 2017, Neural Networks.

[8]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[9]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[10]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[11]  Ralf Bousseljot,et al.  Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet , 2009 .