Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad-Shafranov equation by extension from polygonal subdomains

We propose a high-order adaptive numerical solver for the semilinear elliptic boundary value problem modelling magnetic plasma equilibrium in axisymmetric confinement devices. In the fixed boundary case, the equation is posed on curved domains with piecewise smooth curved boundaries that may present corners. The solution method we present is based on the hybridizable discontinuous Galerkin method and sidesteps the need for geometry-conforming triangulations thanks to a transfer technique that allows to approximate the solution using only a polygonal subset as computational domain. Moreover, the solver features automatic mesh refinement driven by a residual-based a posteriori error estimator. As the mesh is locally refined, the computational domain is automatically updated in order to always maintain the distance between the actual boundary and the computational boundary of the order of the local mesh diameter. Numerical evidence is presented of the suitability of the estimator as an approximate error measure for physically relevant equilibria with pressure pedestals, internal transport barriers, and current holes on realistic geometries.

[1]  Bernardo Cockburn,et al.  The hybridizable discontinuous Galerkin methods , 2011 .

[2]  J. Freidberg,et al.  “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .

[3]  T. Fujita Tokamak equilibria with nearly zero central current: the current hole , 2010 .

[4]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[5]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[6]  Harold Grad,et al.  HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .

[7]  J. P. Goedbloed,et al.  CASTOR: Normal-Mode Analysis of Resistive MHD Plasmas☆ , 1998 .

[8]  Stefan A. Funken,et al.  Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..

[9]  Shinji Tokuda,et al.  Computation of MHD equilibrium of Tokamak Plasma , 1991 .

[10]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[11]  V. Shafranov On Magnetohydrodynamical Equilibrium Configurations , 1958 .

[12]  W. Doerfler,et al.  A robust adaptive strategy for the nonlinear Poisson equation , 1995, Computing.

[13]  J. Leboeuf,et al.  Hollow current profile scenarios for advanced tokamak reactor operations , 2009 .

[14]  Barry Koren,et al.  A mimetic spectral element solver for the Grad-Shafranov equation , 2015, J. Comput. Phys..

[15]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[16]  J. Leboeuf,et al.  Stability of highly shifted equilibria in a large aspect ratio low-field tokamak , 2007 .

[17]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[18]  Laurent Villard,et al.  Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence , 2009 .

[19]  Tonatiuh Sánchez-Vizuet,et al.  A Hybridizable Discontinuous Galerkin solver for the Grad-Shafranov equation , 2017, Comput. Phys. Commun..

[20]  Zhixing Fu,et al.  Algorithm 949 , 2015, ACM Trans. Math. Softw..

[21]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[22]  Rolf Stenberg,et al.  Postprocessing schemes for some mixed finite elements , 1991 .

[23]  Carl R. Sovinec,et al.  Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..

[24]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[25]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[26]  Bernardo Cockburn,et al.  Solving Dirichlet Boundary-value Problems on Curved Domains by Extensions from Subdomains , 2012, SIAM J. Sci. Comput..

[27]  Leslie Greengard,et al.  A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..

[28]  Sylvain Brémond,et al.  Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications , 2015 .

[29]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[30]  Antoine J. Cerfon,et al.  ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria , 2014, Comput. Phys. Commun..

[31]  Ricardo H. Nochetto,et al.  Contraction property of adaptive hybridizable discontinuous Galerkin methods , 2015, Math. Comput..

[32]  A. A. Ivanov,et al.  A stable scheme for computation of coupled transport and equilibrium equations in tokamaks , 2013 .

[33]  A. Bondeson,et al.  Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .

[34]  Wujun Zhang,et al.  A Posteriori Error Estimates for HDG Methods , 2012, J. Sci. Comput..

[35]  R. Lüst,et al.  Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen , 1957 .

[36]  Francisco-Javier Sayas,et al.  A projection-based error analysis of HDG methods , 2010, Math. Comput..

[37]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[38]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[39]  Wujun Zhang,et al.  A Posteriori Error Analysis for Hybridizable Discontinuous Galerkin Methods for Second Order Elliptic Problems , 2013, SIAM J. Numer. Anal..

[40]  Jungpyo Lee,et al.  An analytic scaling relation for the maximum tokamak elongation against n  =  0 MHD resistive wall modes , 2017, 1703.07827.

[41]  C. T. Kelley,et al.  Convergence Analysis for Anderson Acceleration , 2015, SIAM J. Numer. Anal..

[42]  T. Fujita,et al.  Plasma equilibrium and confinement in a tokamak with nearly zero central current density in JT-60U. , 2001, Physical review letters.

[43]  Peter Wittek,et al.  Algorithm 950 , 2013, ACM Trans. Math. Softw..

[44]  R. C. Wolf,et al.  Internal transport barriers in tokamak plasmas , 2003 .

[45]  Jungpyo Lee,et al.  Similarity of the coupled equations for RF waves in a tokamak , 2019, Physics of Plasmas.

[46]  L. Solov’ev,et al.  THEORY OF HYDROMAGNETIC STABILITY OF TOROIDAL PLASMA CONFIGURATIONS. , 1967 .

[47]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[48]  R. Guyan Reduction of stiffness and mass matrices , 1965 .