Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad-Shafranov equation by extension from polygonal subdomains
暂无分享,去创建一个
Antoine J. Cerfon | Manuel E. Solano | Tonatiuh S'anchez-Vizuet | Manuel E. Solano | A. Cerfon | Tonatiuh S'anchez-Vizuet
[1] Bernardo Cockburn,et al. The hybridizable discontinuous Galerkin methods , 2011 .
[2] J. Freidberg,et al. “One size fits all” analytic solutions to the Grad–Shafranov equation , 2010 .
[3] T. Fujita. Tokamak equilibria with nearly zero central current: the current hole , 2010 .
[4] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[5] M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .
[6] Harold Grad,et al. HYDROMAGNETIC EQUILIBRIA AND FORCE-FREE FIELDS , 1958 .
[7] J. P. Goedbloed,et al. CASTOR: Normal-Mode Analysis of Resistive MHD Plasmas☆ , 1998 .
[8] Stefan A. Funken,et al. Efficient implementation of adaptive P1-FEM in Matlab , 2011, Comput. Methods Appl. Math..
[9] Shinji Tokuda,et al. Computation of MHD equilibrium of Tokamak Plasma , 1991 .
[10] Marco Brambilla,et al. Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .
[11] V. Shafranov. On Magnetohydrodynamical Equilibrium Configurations , 1958 .
[12] W. Doerfler,et al. A robust adaptive strategy for the nonlinear Poisson equation , 1995, Computing.
[13] J. Leboeuf,et al. Hollow current profile scenarios for advanced tokamak reactor operations , 2009 .
[14] Barry Koren,et al. A mimetic spectral element solver for the Grad-Shafranov equation , 2015, J. Comput. Phys..
[15] Kunibert G. Siebert,et al. A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .
[16] J. Leboeuf,et al. Stability of highly shifted equilibria in a large aspect ratio low-field tokamak , 2007 .
[17] Donald G. M. Anderson. Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.
[18] Laurent Villard,et al. Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence , 2009 .
[19] Tonatiuh Sánchez-Vizuet,et al. A Hybridizable Discontinuous Galerkin solver for the Grad-Shafranov equation , 2017, Comput. Phys. Commun..
[20] Zhixing Fu,et al. Algorithm 949 , 2015, ACM Trans. Math. Softw..
[21] Y. Mukaigawa,et al. Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .
[22] Rolf Stenberg,et al. Postprocessing schemes for some mixed finite elements , 1991 .
[23] Carl R. Sovinec,et al. Solving the Grad-Shafranov equation with spectral elements , 2014, Comput. Phys. Commun..
[24] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[25] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[26] Bernardo Cockburn,et al. Solving Dirichlet Boundary-value Problems on Curved Domains by Extensions from Subdomains , 2012, SIAM J. Sci. Comput..
[27] Leslie Greengard,et al. A fast, high-order solver for the Grad-Shafranov equation , 2012, J. Comput. Phys..
[28] Sylvain Brémond,et al. Quasi-static free-boundary equilibrium of toroidal plasma with CEDRES++: Computational methods and applications , 2015 .
[29] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .
[30] Antoine J. Cerfon,et al. ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria , 2014, Comput. Phys. Commun..
[31] Ricardo H. Nochetto,et al. Contraction property of adaptive hybridizable discontinuous Galerkin methods , 2015, Math. Comput..
[32] A. A. Ivanov,et al. A stable scheme for computation of coupled transport and equilibrium equations in tokamaks , 2013 .
[33] A. Bondeson,et al. Axisymmetric MHD equilibrium solver with bicubic Hermite elements , 1992 .
[34] Wujun Zhang,et al. A Posteriori Error Estimates for HDG Methods , 2012, J. Sci. Comput..
[35] R. Lüst,et al. Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen , 1957 .
[36] Francisco-Javier Sayas,et al. A projection-based error analysis of HDG methods , 2010, Math. Comput..
[37] R. Bank,et al. Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .
[38] Homer F. Walker,et al. Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..
[39] Wujun Zhang,et al. A Posteriori Error Analysis for Hybridizable Discontinuous Galerkin Methods for Second Order Elliptic Problems , 2013, SIAM J. Numer. Anal..
[40] Jungpyo Lee,et al. An analytic scaling relation for the maximum tokamak elongation against n = 0 MHD resistive wall modes , 2017, 1703.07827.
[41] C. T. Kelley,et al. Convergence Analysis for Anderson Acceleration , 2015, SIAM J. Numer. Anal..
[42] T. Fujita,et al. Plasma equilibrium and confinement in a tokamak with nearly zero central current density in JT-60U. , 2001, Physical review letters.
[43] Peter Wittek,et al. Algorithm 950 , 2013, ACM Trans. Math. Softw..
[44] R. C. Wolf,et al. Internal transport barriers in tokamak plasmas , 2003 .
[45] Jungpyo Lee,et al. Similarity of the coupled equations for RF waves in a tokamak , 2019, Physics of Plasmas.
[46] L. Solov’ev,et al. THEORY OF HYDROMAGNETIC STABILITY OF TOROIDAL PLASMA CONFIGURATIONS. , 1967 .
[47] A. Bondeson,et al. The CHEASE code for toroidal MHD equilibria , 1996 .
[48] R. Guyan. Reduction of stiffness and mass matrices , 1965 .