TrajCompressor: An Online Map-matching-based Trajectory Compression Framework Leveraging Vehicle Heading Direction and Change

Massive and redundant vehicle trajectory data are continuously sent to the data center via vehicle-mounted GPS devices, causing a number of sustainable issues, such as storage, communication, and computation. Online trajectory compression becomes a promising way to alleviate these issues. In this paper, we present an online trajectory compression framework running under the mobile environment. The framework consists of two phases, i.e., online trajectory mapping and trajectory compression. In the phase of online trajectory mapping, we develop a light-weighted yet efficient map matcher, namely, Spatial-Directional Matching (SD-Matching), to align the noisy and sparse GPS points upon the underlying road network, which fully explores the usage of vehicle heading direction collected from the GPS trajectory data. In the phase of online trajectory compression, we propose a novel compressor based on the heading change at intersections, namely, Heading Change Compression (HCC), aiming at finding a concise and compact trajectory representation. Finally, we conduct experiments to evaluate the effectiveness and efficiency of the proposed framework using real-world datasets in the city of Beijing, China. We further deploy the system in the real world in the city of Chongqing, China. The experimental results demonstrate that: 1) the SD-Matching algorithm achieves a higher mean accuracy but consumes less time than the state-of-the-art algorithm, namely, Spatial-Temporal Matching (ST-Matching) and 2) the HCC algorithm also outperforms baselines in trading-off compression ratio and computation time.

[1]  Peng Gao,et al.  A parallel online trajectory compression approach for supporting big data workflow , 2017, Computing.

[2]  Nikos Pelekis,et al.  Trajectory Compression under Network Constraints , 2009, SSTD.

[3]  Nicholas Jing Yuan,et al.  Making sense of trajectory data: A partition-and-summarization approach , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[4]  Nenghai Yu,et al.  Trajectory simplification method for location-based social networking services , 2009, LBSN '09.

[5]  Xing Xie,et al.  An Interactive-Voting Based Map Matching Algorithm , 2010, 2010 Eleventh International Conference on Mobile Data Management.

[6]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[7]  Zhen Zhou,et al.  MA-SSR: A Memetic Algorithm for Skyline Scenic Routes Planning Leveraging Heterogeneous User-Generated Digital Footprints , 2017, IEEE Transactions on Vehicular Technology.

[8]  Lin Sun,et al.  iBOAT: Isolation-Based Online Anomalous Trajectory Detection , 2013, IEEE Transactions on Intelligent Transportation Systems.

[9]  Cheng Long,et al.  Trajectory Simplification: On Minimizing the Direction-based Error , 2014, Proc. VLDB Endow..

[10]  Eamonn J. Keogh,et al.  An online algorithm for segmenting time series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[11]  S. S. Ravi,et al.  Compression of trajectory data: a comprehensive evaluation and new approach , 2014, GeoInformatica.

[12]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[13]  Lionel M. Ni,et al.  Clockwise compression for trajectory data under road network constraints , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[14]  Oliver Pink,et al.  A statistical approach to map matching using road network geometry, topology and vehicular motion constraints , 2008, 2008 11th International IEEE Conference on Intelligent Transportation Systems.

[15]  D. Williamson,et al.  The box plot: a simple visual method to interpret data. , 1989, Annals of internal medicine.

[16]  Chengyang Zhang,et al.  Map-matching for low-sampling-rate GPS trajectories , 2009, GIS.

[17]  Zhen He,et al.  Trajic: An Effective Compression System for Trajectory Data , 2015, IEEE Transactions on Knowledge and Data Engineering.

[18]  Shixiong Xia,et al.  An Overview of Moving Object Trajectory Compression Algorithms , 2016 .

[19]  Muhammad Tayyab Asif,et al.  Online map-matching based on Hidden Markov model for real-time traffic sensing applications , 2012, 2012 15th International IEEE Conference on Intelligent Transportation Systems.

[20]  Hermann A. Maurer,et al.  Efficient worst-case data structures for range searching , 1978, Acta Informatica.

[21]  Nirvana Meratnia,et al.  Spatiotemporal Compression Techniques for Moving Point Objects , 2004, EDBT.

[22]  S. Andrae,et al.  Summarizing GPS trajectories by salient patterns , 2005 .

[23]  John Krumm,et al.  Hidden Markov map matching through noise and sparseness , 2009, GIS.

[24]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[25]  Anita Graser,et al.  Fast Hidden Markov Model Map-Matching for Sparse and Noisy Trajectories , 2015, 2015 IEEE 18th International Conference on Intelligent Transportation Systems.

[26]  David Bernstein,et al.  Some map matching algorithms for personal navigation assistants , 2000 .

[27]  Nikos Pelekis,et al.  Map-matched trajectory compression , 2013, J. Syst. Softw..

[28]  Junping Song,et al.  A trajectory compression algorithm based on non-uniform quantization , 2015, 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[29]  Jiajun Liu,et al.  Bounded Quadrant System: Error-bounded trajectory compression on the go , 2014, 2015 IEEE 31st International Conference on Data Engineering.

[30]  Lin Sun,et al.  Understanding Taxi Service Strategies From Taxi GPS Traces , 2015, IEEE Transactions on Intelligent Transportation Systems.

[31]  Robert B. Noland,et al.  Current map-matching algorithms for transport applications: State-of-the art and future research directions , 2007 .

[32]  Joachim Gudmundsson,et al.  Compressing spatio-temporal trajectories , 2009, Comput. Geom..

[33]  J. Greenfeld MATCHING GPS OBSERVATIONS TO LOCATIONS ON A DIGITAL MAP , 2002 .

[34]  Daqing Zhang,et al.  Urban Traffic Modelling and Prediction Using Large Scale Taxi GPS Traces , 2012, Pervasive.

[35]  Tengjiao Wang,et al.  Online Map-Matching Algorithm Using Object Motion Laws , 2017, 2017 IEEE 3rd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS).

[36]  Michel Bierlaire,et al.  A Probabilistic Map Matching Method for Smartphone GPS data , 2013 .

[37]  Feng Chen,et al.  From Twitter to detector: real-time traffic incident detection using social media data , 2016 .

[38]  Yin Wang,et al.  Fast Viterbi map matching with tunable weight functions , 2012, SIGSPATIAL/GIS.

[39]  Yanmin Zhu,et al.  A Survey on Trajectory Data Mining: Techniques and Applications , 2016, IEEE Access.

[40]  Kai-Florian Richter,et al.  Semantic trajectory compression: Representing urban movement in a nutshell , 2012, J. Spatial Inf. Sci..

[41]  Ambuj K. Singh,et al.  Prediction-based Online Trajectory Compression , 2016, ArXiv.

[42]  Qiang Qu,et al.  Summarisation of weighted networks , 2017, J. Exp. Theor. Artif. Intell..

[43]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[44]  Hao Liu,et al.  A Comparison of Road-Network-Constrained Trajectory Compression Methods , 2016, 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS).

[45]  Shian-Shyong Tseng,et al.  Discovering Traffic Bottlenecks in an Urban Network by Spatiotemporal Data Mining on Location-Based Services , 2011, IEEE Transactions on Intelligent Transportation Systems.

[46]  A. Kornhauser,et al.  An Introduction to Map Matching for Personal Navigation Assistants , 1998 .

[47]  Lin Sun,et al.  Hunting or waiting? Discovering passenger-finding strategies from a large-scale real-world taxi dataset , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[48]  Xiaoyu Yang,et al.  A Privacy-Preserving Compression Storage Method for Large Trajectory Data in Road Network , 2018, Journal of Grid Computing.

[49]  Zhi-Hua Zhou,et al.  iBAT: detecting anomalous taxi trajectories from GPS traces , 2011, UbiComp '11.

[50]  Han Zhang,et al.  One-Pass Error Bounded Trajectory Simplification , 2017, Proc. VLDB Endow..

[51]  Laurent Étienne,et al.  Trajectory Box Plot; a New Pattern to Summarize Movements , 2015 .

[52]  Weiwei Sun,et al.  COMPRESS , 2017, ACM Trans. Database Syst..

[53]  Weiwei Sun,et al.  PRESS: A Novel Framework of Trajectory Compression in Road Networks , 2014, Proc. VLDB Endow..

[54]  Silviu-Iulian Niculescu,et al.  Comparative Study and Application-Oriented Classification of Vehicular Map-Matching Methods , 2018, IEEE Intelligent Transportation Systems Magazine.

[55]  Daqing Zhang,et al.  crowddeliver: Planning City-Wide Package Delivery Paths Leveraging the Crowd of Taxis , 2017, IEEE Transactions on Intelligent Transportation Systems.

[56]  Christian S. Jensen,et al.  Efficient Online Summarization of Large-Scale Dynamic Networks , 2016, IEEE Transactions on Knowledge and Data Engineering.

[57]  Chao Chen,et al.  TripImputor: Real-Time Imputing Taxi Trip Purpose Leveraging Multi-Sourced Urban Data , 2018, IEEE Transactions on Intelligent Transportation Systems.

[58]  Qiong Luo,et al.  HIMM: An HMM-Based Interactive Map-Matching System , 2017, DASFAA.