Surface structure of ultrathin copolymer films of ferroelectric vinylidene fluoride (70%) with trifluoroethylene (30%) on graphite

The structure and local structural distortions, through the polarization manipulation, of crystalline films of ferroelectric vinylidene fluoride (70%) with trifluoroethylene (30%) [P(VDF-TrFE)] copolymer on graphite were studied by scanning tunneling microscopy (STM). A quasispiral twist in $\mathrm{C}\mathrm{C}$ bonds with rotations about the polymer chain axis was observed by high-resolution STM, indicating a surface relaxation of the strained copolymer films. Such a relaxation behavior appears to be linked to the observed local dipole rotations accompanied by the reversal of the local polarization with biasing the STM tip. A structure model is proposed based upon the observations.

[1]  E. Bauer Epitaxy of metals on metals , 1982 .

[2]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[3]  C Joachim,et al.  Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. , 2001, Physical review letters.

[4]  T. Kurokawa,et al.  Electrical properties of polyacetylene/polysiloxane interface , 1983 .

[5]  K. Kimura,et al.  Polarization Behavior in Vinylidene Fluoride-Trifluoroethylene Copolymer Thin Films , 1986 .

[6]  K. Matsushige,et al.  Nanometer-Scale Characterization of Ferroelectric Polymer Thin Films by Variable-Temperature Atomic Force Microscopy , 2000 .

[7]  L. Blinov,et al.  Novel switching phenomena in ferroelectric Langmuir-Blodgett films , 1995 .

[8]  H. Ohigashi,et al.  Lamellar and Bulk Single Crystals Grown in Annealed Films of Vinylidene Fluoride and Trifluoroethylene Copolymers , 1988 .

[9]  L. Blinov,et al.  Ferroelectric Langmuir-Blodgett films showing bistable switching , 1996 .

[10]  G. Binnig,et al.  Scanning tunneling microscopy-from birth to adolescence , 1987 .

[11]  V. Fridkin,et al.  Phase transition in the surface structure in copolymer films of vinylidene fluoride (70%) with trifluoroethylene (30%) , 2000 .

[12]  D. Eigler,et al.  Atomic and Molecular Manipulation with the Scanning Tunneling Microscope , 1991, Science.

[13]  F. Krebs,et al.  Imaging and manipulation of a polar molecule on Ag(111) , 2001 .

[14]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[15]  R. Vook Structure and growth of thin films , 1982 .

[16]  A. Kubono,et al.  STRUCTURES OF VINYLIDENE FLUORIDE OLIGOMER THIN FILMS ON ALKALI HALIDE SUBSTRATE , 1999 .

[17]  Stephen Ducharme,et al.  CRITICAL POINT IN FERROELECTRIC LANGMUIR-BLODGETT POLYMER FILMS , 1998 .

[18]  V. Fridkin,et al.  LATTICE AND ELECTRONIC BAND STRUCTURE CHANGES ACROSS THE SURFACE FERROELECTRIC TRANSITION , 1998 .

[19]  L. Blinov,et al.  Ferroelectric Langmuir-Blodgett films , 1995 .

[20]  C Joachim,et al.  Direct determination of the energy required to operate a single molecule switch. , 2003, Physical review letters.

[21]  K. Dransfeld,et al.  Local poling of ferroelectric polymers by scanning force microscopy , 1992 .

[22]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[23]  A. Kubono,et al.  Molecular ferroelectricity of vinylidene fluoride oligomer investigated by atomic force microscopy , 2001 .

[24]  A. Kubono,et al.  Structures and ferroelectric natures of epitaxially grown vinylidene fluoride oligomer thin films , 2000 .

[25]  V. Fridkin,et al.  Changes in Metallicity and Electronic Structure Across the Surface Ferroelectric Transition of Ultrathin Crystalline Poly(vinylidene Fluoride-Trifluoroethylene) Copolymers , 1998 .

[26]  J. Groenen,et al.  Tensile and compressive strain relief in InxGa1−xAs epilayers grown on InP probed by Raman scattering , 1997 .

[27]  Two-dimensional ferroelectrics , 2000 .

[28]  Gerd Meyer,et al.  BASIC STEPS OF LATERAL MANIPULATION OF SINGLE ATOMS AND DIATOMIC CLUSTERS WITH A SCANNING TUNNELING MICROSCOPE TIP , 1997 .

[29]  A. Dunn,et al.  Room temperature manipulation of C60 molecules on a Si surface , 1996 .

[30]  T. Furukawa Ferroelectric properties of vinylidene fluoride copolymers , 1989 .

[31]  L. Blinov,et al.  Two-dimensional ferroelectricity and second harmonic generation in PVDF Langmuir Blodgett films , 2000 .

[32]  V. Fridkin,et al.  Nanoscale polarization manipulation and conductance switching in ultrathin films of a ferroelectric copolymer , 2003 .

[33]  J. H. Merwe Misfit accomodation in epitaxial monolayers on (111) F.C.C. and (110) B.C.C. substrates I: Analytical approach , 1980 .

[34]  N. Amer,et al.  Scanning tunneling microscopy of surfactant-mediated epitaxy of Ge on Si(111): strain relief mechanisms and growth kinetics , 1992 .

[35]  V. Fridkin,et al.  Lattice-Stiffening Transition in Copolymer Films of Vinylidene Fluoride (70%) with Trifluoroethylene (30%) , 1999 .

[36]  Fang,et al.  Reversible, nanometer-scale conductance transitions in an organic complex , 2000, Physical review letters.

[37]  H. Yanagi,et al.  STM-Induced Flip-Flop Switching of Adsorbed Subphthalocyanine Molecular Arrays , 2002 .

[38]  Stephen Ducharme,et al.  Two-dimensional ferroelectrics , 2000 .

[39]  P. Weiss,et al.  Strong substrate effect in local poling of ultrathin ferroelectric polymer films , 1999 .

[40]  K. Matsushige,et al.  Nanoscale control and detection of electric dipoles in organic molecules , 1998 .

[41]  Daniel Rugar,et al.  Gold deposition from a scanning tunneling microscope tip , 1991 .

[42]  V. Fridkin,et al.  Photoemission band symmetries and dipole active modes of crystalline films of vinylidene fluoride (70%) with trifluoroethylene (30%) across the ferroelectric transition(s) , 2000 .

[43]  E. Bellet-Amalric,et al.  Crystalline structures and phase transition of the ferroelectric P(VDF-TrFE) copolymers, a neutron diffraction study , 1998 .

[44]  M. Pook,et al.  The interplay of surface morphology and strain relief in surfactant mediated growth of Ge on Si(111) , 1993 .

[45]  F. C. Frank,et al.  One-dimensional dislocations. I. Static theory , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.