Controlling Spatiotemporal Chaos with a Generalized Feedback Method

The usual linear variable feedback control method is extended to a generalized function feedback scheme. The scheme is applied to high-dimensional spatiotemporal systems. By a combination of local generalized feedback control and the spatial coupling effect among elements, turbulent motion can be successfully eliminated.

[1]  G. Hu,et al.  Controlling Turbulence in the Complex Ginzburg-Landau Equation , 1998 .

[2]  Ying Lu,et al.  Attraction of spiral waves by localized inhomogeneities with small-world connections in excitable media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Francesc Sagués,et al.  Taming Winfree Turbulence of Scroll Waves in Excitable Media , 2003, Science.

[4]  X Zhang,et al.  Controlling spatiotemporal chaos via phase space compression. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Hu Gang,et al.  Controlling Spiral Waves by Modulations Resonant with the Intrinsic System Mode , 2004 .

[6]  Controlling Flow Turbulence Using Local Pinning Feedback , 2006 .

[7]  G. Hu,et al.  Control of spatiotemporal chaos by using random itinerant feedback injections , 2001 .

[8]  Qu,et al.  Controlling spatiotemporal chaos in coupled map lattice systems. , 1994, Physical review letters.

[9]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[10]  Gang Hu,et al.  Suppress Winfree turbulence by local forcing excitable systems. , 2005, Physical review letters.

[11]  Hong Zhang,et al.  Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[13]  Jinghua,et al.  Analytical study of spatiotemporal chaos control by applying local injections , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[15]  Zhao Zheng,et al.  An Improved Thin Film Brick-Wall Model of Black Hole Entropy , 2001 .

[16]  Ljupco Kocarev,et al.  Controlling spatiotemporal chaos in coupled nonlinear oscillators , 1997 .

[17]  Bambi Hu,et al.  Phase Synchronization in Coupled Oscillators: Dynamical Manifestations , 2001 .

[18]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[19]  Kun Li,et al.  Chaotic synchronization through coupling strategies. , 2006, Chaos.

[20]  Alain Pumir,et al.  The Eckhaus instability for traveling waves , 1992 .