Distance-redshift and growth-redshift relations as two windows on acceleration and gravitation: Dark energy or new gravity?

Small distortions in the observed shapes of distant galaxies, a cosmic shear due to gravitational lensing, can be used to simultaneously determine the distance-redshift relation, $r(z)$, and the density contrast growth factor, $g(z)$. Both of these functions are sensitive probes of the acceleration. Their simultaneous determination allows for a consistency test and provides sensitivity to physics beyond the standard dark energy paradigm.

[1]  Neutrino mass and dark energy from weak lensing. , 2002, Physical review letters.

[2]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[3]  D. Wittman Spurious Shear from the Atmosphere in Ground-based Weak-lensing Observations , 2005, astro-ph/0509003.

[4]  M. White Baryons and weak lensing power spectra , 2004, astro-ph/0405593.

[5]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[6]  Dependence of the non-linear mass power spectrum on the equation of state of dark energy , 2005, astro-ph/0505565.

[7]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[8]  J. Miralda-Escudé The correlation function of galaxy ellipticities produced by gravitational lensing , 1991 .

[9]  Asantha Cooray,et al.  Measuring Angular Diameter Distances through Halo Clustering , 2001, astro-ph/0105061.

[10]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[11]  Illuminating dark energy with cosmic shear , 2004, astro-ph/0411673.

[12]  Weak lensing in generalized gravity theories , 2004, astro-ph/0403654.

[13]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[14]  Yong Song Looking for an extra dimension with tomographic cosmic shear , 2004, astro-ph/0407489.

[15]  S. Dodelson,et al.  Dark energy and the cosmic microwave background radiation. , 2000, Physical review letters.

[16]  Glenn Starkman,et al.  Differentiating between modified gravity and dark energy , 2004 .

[17]  How Cold Dark Matter Theory Explains Milgrom's Law , 2001, astro-ph/0107284.

[18]  A. Lue,et al.  The phenomenology of Dvali–Gabadadze–Porrati cosmologies , 2005, astro-ph/0510068.

[19]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[20]  Precision measurement of the mean curvature , 2005, astro-ph/0503405.

[21]  Yong-Seon Song,et al.  Determination of cosmological parameters from cosmic shear data , 2004 .

[22]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[23]  S. Dodelson,et al.  Nonlinear cosmological matter power spectrum with massive neutrinos: The halo model , 2004, astro-ph/0411552.

[24]  Wayne Hu,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .

[25]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[26]  Jun Zhang,et al.  Isolating Geometry in Weak-Lensing Measurements , 2003, astro-ph/0312348.

[27]  L. Knox,et al.  Effect of Hot Baryons on the Weak-Lensing Shear Power Spectrum , 2004, astro-ph/0409198.

[28]  Probing Newton's constant on vast scales: Dvali-Gabadadze-Porrati gravity, cosmic acceleration, and large scale structure , 2004, astro-ph/0401515.

[29]  Calibrating the nonlinear matter power spectrum: Requirements for future weak lensing surveys , 2004, astro-ph/0412142.