Bayesian Estimation of DSGE Models: Lessons from Second-order Approximations

This paper investigates a general procedure to estimate second-order approximations to a DSGE model and compares the performance with the widely used estimation technique for a log-linearized economy on a version of new Keynesian monetary model. It is done in the context of posterior distributions, welfare cost, and impulse response analysis. Our findings include the followings. First, we find that all the results of An and Schorfheide (2007) are confirmed with U.S. data. With the nonlinear estimation we can identify parameters that are neglected previously; the marginal data density evaluation shows that data support the nonlinear estimation procedure; and parameter estimates that are related to nondeterministic steady states are quite different from the linear estimates. Second, the estimated welfare differentials are more aggressive for the second-order approximations, that is, the posterior welfare differentials from the linear estimation may underestimate the welfare cost resulted from changes in the monetary policy. Third, the second-order approximation unveils quite different dynamics which are neglected in a log-linearized economy. JEL Classification: C11, C32, C51, C52, E52

[1]  M. Juillard,et al.  Accuracy of stochastic perturbation methods: The case of asset pricing models , 2001 .

[2]  Gary S. Anderson A Reliable and Computationally Efficient Algorithm for Imposing the Saddle Point Property in Dynamic Models , 1998 .

[3]  K. Judd Numerical methods in economics , 1998 .

[4]  Julio J. Rotemberg,et al.  Oligopolistic Pricing and the Effects of Aggregate Demand on Economic Activity , 1989, Journal of Political Economy.

[5]  M. Woodford,et al.  INTEREST AND PRICES: FOUNDATIONS OF A THEORY OF MONETARY POLICY , 2005, Macroeconomic Dynamics.

[6]  P. Klein,et al.  Using the generalized Schur form to solve a multivariate linear rational expectations model q , 1997 .

[7]  Peter E. Rossi,et al.  Nonlinear dynamic structures , 1993 .

[8]  Julio J. Rotemberg,et al.  An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy , 1997, NBER Macroeconomics Annual.

[9]  Juan Francisco Rubio-Ram Comparing dynamic equilibrium models to data: a Bayesian approach , 2004 .

[10]  C. Sims Solving Linear Rational Expectations Models , 2002 .

[11]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[12]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[13]  Ellen R. McGrattan,et al.  The macroeconomic effects of distortionary taxation , 1994 .

[14]  Frank Smets,et al.  An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area , 2002 .

[15]  Marco Del Negro,et al.  Policy Predictions If the Model Doesn't Fit , 2004 .

[16]  Harald Uhlig,et al.  A Toolkit for Analysing Nonlinear Dynamic Stochastic Models Easily , 1995 .

[17]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[18]  Thomas J. Sargent,et al.  Two Models of Measurements and the Investment Accelerator , 1989, Journal of Political Economy.

[19]  Christopher Otrok,et al.  On Measuring the Welfare Cost of Business Cycles , 2001 .

[20]  Jesús Fernández-Villaverde,et al.  Estimating Nonlinear Dynamic Equilibrium Economies: A Likelihood Approach , 2004 .

[21]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[22]  Stephanie Schmitt-Grohé,et al.  Optimal Simple and Implementable Monetary and Fiscal Rules , 2004 .

[23]  Beth F. Ingram,et al.  A Bayesian approach to dynamic macroeconomics , 2000 .

[24]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[25]  M. Hashem Pesaran,et al.  Impulse response analysis in nonlinear multivariate models , 1996 .

[26]  Michael Binder,et al.  GAUSS and Matlab codes for Multivariate Linear Rational Expectations Models: Characterization of the Nature of the Solutions and Their Fully Recursive Computation , 1997 .

[27]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[28]  Gary S. Anderson,et al.  Higher-Order Perturbation Solutions to Dynamic, Discrete-Time Rational Expectations Models , 2003 .

[29]  Jesús Fernández-Villaverde,et al.  Comparing dynamic equilibrium models to data: a Bayesian approach , 2004 .

[30]  Lawrence J. Christiano,et al.  Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy , 2001, Journal of Political Economy.

[31]  Sunghyun Kim,et al.  Spurious Welfare Reversals in International Business Cycle Models , 2000 .

[32]  John Geweke,et al.  Computational Experiments and Reality , 1999 .

[33]  Harald Uhlig,et al.  Solving Nonlinear Stochastic Growth Models: a Comparison of Alternative Solution Methods , 1989 .

[34]  Frank Schorfheide,et al.  Loss function‐based evaluation of DSGE models , 2000 .

[35]  Charles M. Kahn,et al.  THE SOLUTION OF LINEAR DIFFERENCE MODELS UNDER RATIONAL EXPECTATIONS , 1980 .

[36]  He-hui Jin,et al.  Perturbation methods for general dynamic stochastic models , 2002 .

[37]  M. Pesaran,et al.  Multivariate Linear Rational Expectations Models , 1997, Econometric Theory.

[38]  Christopher A. Sims,et al.  SECOND ORDER ACCURATE SOLUTION OF DISCRETE TIME DYNAMIC EQUILIBRIUM MODELS , 2003 .

[39]  Toni Braun A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily , 1995 .

[40]  Albert Marcet,et al.  Accuracy in Simulations , 1994 .

[41]  G. Illing,et al.  Monetary Policy Under Uncertainty , 2019, Springer Texts in Business and Economics.

[42]  Hisashi Tanizaki,et al.  Nonlinear Filters: Estimation and Applications , 1993 .

[43]  Andrew T. Levin,et al.  Optimal Monetary Policy with Endogenous Capital Accumulation , 2004 .

[44]  L. M. M.-T. Theory of Probability , 1929, Nature.

[45]  Charles I. Plosser,et al.  Production, growth and business cycles , 1988 .

[46]  Tim B. Swartz,et al.  Bayesian Analysis of Dyadic Data , 2007 .

[47]  Lawrence J. Christiano Solving Dynamic Equilibrium Models by a Method of Undetermined Coefficients , 1998 .

[48]  Andrew T. Levin,et al.  NBER WORKING PAPER SERIES MONETARY POLICY UNDER UNCERTAINTY IN MICRO-FOUNDED MACROECONOMETRIC MODELS , 2005 .

[49]  M. Uribe,et al.  Optimal Fiscal and Monetary Policy in a Medium-Scale Macroeconomic Model , 2005, NBER Macroeconomics Annual.

[50]  Charles I. Plosser,et al.  Growth and Business Cycles I. The Basic Neoclassical Model , 1988 .

[51]  M. Uribe,et al.  Optimal Simple and Implementable Monetary and Fiscal Rules , 2004 .

[52]  Jesús Fernández-Villaverde,et al.  Estimating Dynamic Equilibrium Economies: Linear Versus Nonlinear Likelihood , 2004 .

[53]  Jesús Fernández-Villaverde,et al.  Comparing Solution Methods for Dynamic Equilibrium Economies , 2003 .