T-functions revisited: new criteria for bijectivity/transitivity
暂无分享,去创建一个
[1] Akhil Mathew,et al. The p-adic Numbers , 2009 .
[2] H. Lausch,et al. Algebra of Polynomials , 1974 .
[3] B. Bagchi,et al. Latin squares , 2012 .
[4] G. Mullen,et al. Discrete Mathematics Using Latin Squares , 1998, The Mathematical Gazette.
[5] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[6] Vladimir Anashin,et al. Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .
[7] Vladimir Anashin,et al. Uniformly distributed sequences of p-adic integers, II , 2002, math/0209407.
[8] Adi Shamir,et al. A New Class of Invertible Mappings , 2002, CHES.
[9] Nicholas Kolokotronis. Cryptographic properties of nonlinear pseudorandom number generators , 2008, Des. Codes Cryptogr..
[10] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .
[11] Andrey Bogdanov,et al. ABC: A New Fast Flexible Stream Cipher , 2005 .
[12] M. V. Larin,et al. Transitive polynomial transformations of residue class rings , 2002 .
[13] Vladimir Anashin,et al. Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers , 1998 .
[14] Adi Shamir,et al. Cryptographic Applications of T-Functions , 2003, Selected Areas in Cryptography.
[15] Tor Helleseth,et al. Alinear weakness in the Klimov-Shamir T-function , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[16] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[17] Vladimir Anashin,et al. Non-Archimedean Ergodic Theory and Pseudorandom Generators , 2007, Comput. J..
[18] Robert A. Beezer. Discrete Mathematics Using Latin Squares, by Charles F. Laywine, Gary L. Mullen , 2002 .
[19] Tor Helleseth,et al. Linear Properties in T-Functions , 2006, IEEE Transactions on Information Theory.
[20] Gerhard Goos,et al. Fast Software Encryption , 2001, Lecture Notes in Computer Science.
[21] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[22] Andrei Khrennikov,et al. Applied Algebraic Dynamics , 2009 .
[23] Vladimir Anashin,et al. Pseudorandom number generation by p-adic ergodic transformations: an addendum , 2004, ArXiv.
[24] Chuan-Kun Wu,et al. The Algebraic Normal Form, Linear Complexity and k-Error Linear Complexity of Single-Cycle T-Function , 2006, SETA.
[25] K. Mahler. p-adic numbers and their functions , 1981 .
[26] Vladimir Anashin,et al. Ergodic Transformations in the Space of p‐Adic Integers , 2006, math/0602083.
[27] Marcus Nilsson,et al. P-adic Deterministic and Random Dynamics , 2004 .
[28] S. V. Kozyrev,et al. On p-adic mathematical physics , 2006, 0904.4205.
[29] Adi Shamir,et al. New Cryptographic Primitives Based on Multiword T-Functions , 2004, FSE.
[30] Dongdai Lin,et al. Ergodic theory over F2[[T]] , 2012, Finite Fields Their Appl..
[31] A. Khrennikov. Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena , 2004 .
[32] Dongdai Lin,et al. Linear Relation on General Ergodic T-Function , 2011, ArXiv.
[33] Vladimir Anashin. Automata finiteness criterion in terms of van der Put series of automata functions , 2011, ArXiv.
[34] Ekaterina Yurova. Van der Put basis and p-adic dynamics , 2010 .
[35] Dongdai Lin,et al. Linear Weaknesses in T-functions , 2012, SETA.
[36] V. S. Anachin. Uniformly distributed sequences ofp-adic integers , 1994 .
[37] Andrei Khrennikov,et al. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .
[38] Vladimir Anashin,et al. The Non-Archimedean Theory of Discrete Systems , 2011, Math. Comput. Sci..
[39] Wen-Feng Qi,et al. Linear Equation on Polynomial Single Cycle T-Functions , 2007, Inscrypt.
[40] Kai-Thorsten Wirt. ASC – A Stream Cipher with Built – In MAC Functionality , 2007 .
[41] Dong Hoon Lee,et al. A New Class of Single Cycle T-Functions , 2005, FSE.
[42] Adi Shamir,et al. New Applications of T-Functions in Block Ciphers and Hash Functions , 2005, FSE.