Optical computing

In this survey we consider optical computers that encode data using images and compute by transforming such images. We give an overview of a number of such optical computing architectures, including descriptions of the type of hardware commonly used in optical computing, as well as some of the computational efficiencies of optical devices. We go on to discuss optical computing from the point of view of computational complexity theory, with the aim of putting some old, and some very recent, results in context. Finally, we focus on a particular optical model of computation called the continuous space machine. We describe some results for this model including characterisations in terms of well-known complexity classes.

[1]  Cristopher Moore,et al.  Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .

[2]  Thomas J. Naughton,et al.  Parallel and Sequential Optical Computing , 2008, OSC.

[3]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[4]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[5]  Steven Fortune,et al.  Parallelism in random access machines , 1978, STOC.

[6]  Cristopher Moore Majority-Vote Cellular Automata, Ising Dynamics, and P-Completeness , 1997 .

[7]  Yunlong Sheng,et al.  An Introduction to Optics in Computers , 1992 .

[8]  Alfonso Rodríguez-Patón,et al.  Membrane computing and complexity theory: A characterization of PSPACE , 2007, J. Comput. Syst. Sci..

[9]  J. Goodman Introduction to Fourier optics , 1969 .

[10]  T A Dullforce,et al.  Handbook of Optical Holography , 1980 .

[11]  Peter van Emde Boas,et al.  Associative Storage Modification Machines , 1993, Complexity Theory: Current Research.

[12]  H. . .. J. Caulfield,,et al.  Generalized Matched Filtering , 1979, Optics & Photonics.

[13]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  Petr Sosík The computational power of cell division in P systems: Beating down parallel computers? , 2004, Natural Computing.

[15]  J.W. Goodman Operations achievable with coherent optical information processing systems , 1977, Proceedings of the IEEE.

[16]  J. Goodman,et al.  A technique for optically convolving two functions. , 1966, Applied optics.

[17]  J. Paul Gibson,et al.  Lower bounds on the computational power of an optical model of computation , 2007, Natural Computing.

[18]  Demetri Psaltis,et al.  New Approach To Optical Information-Processing Based On The Hopfield Model , 1984 .

[19]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[20]  Takashi Yokomori,et al.  Molecular computing paradigm – toward freedom from Turing's charm , 2002, Natural Computing.

[21]  John M. Hessenbruch,et al.  Free-Space Interconnects for High-Performance Optoelectronic Switching , 1998, Computer.

[22]  G. Turin,et al.  An introduction to matched filters , 1960, IRE Trans. Inf. Theory.

[23]  Leslie M. Goldschlager,et al.  A unified approach to models of synchronous parallel machines , 1978, STOC.

[24]  Damien Woods Optical Computing and Computational Complexity , 2006, UC.

[25]  José L. Balcázar,et al.  Structural complexity 1 , 1988 .

[26]  H H Arsenault,et al.  Optical pattern recognition using circular harmonic expansion. , 1982, Applied optics.

[27]  R J Lipton,et al.  DNA solution of hard computational problems. , 1995, Science.

[28]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[29]  J.,et al.  Using DNA to Solve NP-Complete ProblemsRichard , 1995 .

[30]  D. Casasent,et al.  Position, rotation, and scale invariant optical correlation. , 1976, Applied optics.

[31]  B. Javidi Nonlinear joint power spectrum based optical correlation. , 1989, Applied optics.

[32]  A Louri,et al.  Complexity analysis of optical-computing paradigms. , 1992, Applied optics.

[33]  Damien Woods Upper Bounds on the Computational Power of an Optical Model of Computation , 2005, ISAAC.

[34]  H. James Hoover,et al.  Limits to Parallel Computation: P-Completeness Theory , 1995 .

[35]  Jérôme Olivier Durand-Lose Reversible Conservative Rational Abstract Geometrical Computation Is Turing-Universal , 2006, CiE.

[36]  A. B. Vander Lugt,et al.  Signal detection by complex spatial filtering , 1964, IEEE Trans. Inf. Theory.

[37]  Artiom Alhazov,et al.  Uniform Solution of , 2007, MCU.

[38]  Thomas J. Naughton,et al.  On the Computational Power of a Continuous-Space Optical Model of Computation , 2001, MCU.

[39]  X Yang,et al.  Optical neural network with pocket-sized liquid-crystal televisions. , 1990, Optics letters.

[40]  Jan van Leeuwen,et al.  Array processing machines: An abstract model , 1987, BIT Comput. Sci. Sect..

[41]  Dror G. Feitelson Optical computing - a survey for computer scientists , 1988 .

[42]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[43]  Damien Woods,et al.  Computational complexity of an optical model of computation , 2005 .

[44]  Shlomi Dolev,et al.  Optical solution for bounded NP-complete problems. , 2007, Applied optics.

[45]  Wolfgang Osten,et al.  An optical solution for the traveling salesman problem. , 2007, Optics express.

[46]  Leslie M. Goldschlager,et al.  A universal interconnection pattern for parallel computers , 1982, JACM.

[47]  Artiom Alhazov,et al.  Uniform Solution to QSAT Using Polarizationless Active Membranes , 2006 .

[48]  P. Boas Machine models and simulations , 1991 .

[49]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[50]  Francis T. S. Yu,et al.  Introduction to information optics , 2001 .

[51]  Vijaya Ramachandran,et al.  ERCW PRAMs and Optical Communication , 1996, Theor. Comput. Sci..

[52]  Thomas J. Naughton,et al.  An optical model of computation , 2005, Theor. Comput. Sci..

[53]  D. B. Fraser,et al.  HOLOGRAPHIC STORAGE IN LITHIUM NIOBATE , 1968 .

[54]  J H Reif,et al.  Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive. , 1997, Applied optics.

[55]  Neil Collings,et al.  Use of optical hardware to find good solutions to the traveling salesman problem , 1993, Other Conferences.

[56]  Shlomi Dolev,et al.  The Traveling Beams Optical Solutions for Bounded NP-Complete Problems , 2007, FUN.

[57]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[58]  R Barakat,et al.  Lower bounds on the computational efficiency of optical computing systems. , 1987, Applied optics.

[59]  David Casasent,et al.  Comparison of coherent and noncoherent optical correlators , 1994, Defense, Security, and Sensing.

[60]  H. J. Caulfield,et al.  Hybrid Analog-Digital Linear Algebra Processors , 1986, Other Conferences.

[61]  Edward L. O'Neill,et al.  Spatial filtering in optics , 1956, IRE Trans. Inf. Theory.

[62]  P. Y. Wang,et al.  Selecting optical patterns with spatial phase modulation. , 1999, Optics letters.

[63]  Natan T. Shaked,et al.  Optical processor for solving the traveling salesman problem (TSP) , 2006, SPIE Optics + Photonics.

[64]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[65]  Jan van Leeuwen,et al.  Array processing machines , 1985, FCT.

[66]  Thomas J. Naughton,et al.  Model of computation for Fourier optical processors , 2000, International Topical Meeting on Optics in Computing.

[67]  David Casasent,et al.  Introduction to the Special Issue on Optical Computing , 1975 .

[68]  P A Mitkas,et al.  Bitonic sorting using an optoelectronic recirculating architecture. , 1994, Applied optics.

[69]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[70]  John H. Reif,et al.  Energy complexity of optical computations , 1990, Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing 1990.

[71]  Juris Hartmanis,et al.  On the Power of Multiplication in Random Access Machines , 1974, SWAT.

[72]  J. Doug Tygar,et al.  The computability and complexity of optical beam tracing , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[73]  Mihai Oltean A Light-Based Device for Solving the Hamiltonian Path Problem , 2006, UC.

[74]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[75]  H. J. Caulfield,et al.  Optical neural networks , 1989 .

[76]  W. P. Bleha,et al.  The liquid crystal light valve, an optical-to-optical interface device , 1973, Pattern Recognit..

[77]  Ian Parberry,et al.  Parallel complexity theory , 1987, Research notes in theoretical computer science.

[78]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[79]  A. Chiou,et al.  Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects , 1999, Proc. IEEE.

[80]  Mohammad A. Karim,et al.  Optical Computing: An Introduction , 1992 .

[81]  Leslie Michael Goldschlager,et al.  Synchronous parallel computation. , 1978 .

[82]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[83]  H. John Caulfield Space-time complexity in optical computing , 1990, Optics & Photonics.

[84]  Thomas J. Naughton,et al.  General purpose acousto-optic connectionist processor , 1999 .

[85]  Larry J. Stockmeyer,et al.  A characterization of the power of vector machines , 1974, STOC '74.

[86]  A. Lohmann,et al.  Optical correlation with totally incoherent light. , 1999, Optics letters.

[87]  Karl-Heinz Brenner,et al.  Digital Optical Computing With Symbolic Substitution , 1989, Other Conferences.

[88]  Demetri Psaltis,et al.  Real-time vehicle navigation using a holographic memory , 1997 .

[89]  Bahram Javidi,et al.  Optimum distortion-invariant filter for detecting a noisy distorted target in nonoverlapping background noise , 1995 .

[90]  H. J. Caulfield,et al.  Optical implementation of systolic array processing , 1981 .

[91]  H. John Caulfield,et al.  Speed And Convergence Of Bimodal Optical Computers , 1987 .

[92]  Natan T. Shaked,et al.  Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems , 2007 .

[93]  A. Huang,et al.  Architectural considerations involved in the design of an optical digital computer , 1984, Proceedings of the IEEE.

[94]  Thomas J. Naughton,et al.  Continuous-space model of computation is Turing universal , 2000, SPIE Optics + Photonics.

[95]  J. Paul Gibson,et al.  Complexity of Continuous Space Machine Operations , 2005, CiE.