Synaptic Activity Unmasks Dopamine D2 Receptor Modulation of a Specific Class of Layer V Pyramidal Neurons in Prefrontal Cortex

Dopamine D2 receptors (D2Rs) play a major role in the function of the prefrontal cortex (PFC), and may contribute to prefrontal dysfunction in conditions such as schizophrenia. Here we report that in mouse PFC, D2Rs are selectively expressed by a subtype of layer V pyramidal neurons that have thick apical tufts, prominent h-current, and subcortical projections. Within this subpopulation, the D2R agonist quinpirole elicits a novel afterdepolarization that generates voltage fluctuations and spiking for hundreds of milliseconds. Surprisingly, this afterdepolarization is masked in quiescent brain slices, but is readily unmasked by physiologic levels of synaptic input which activate NMDA receptors, possibly explaining why this phenomenon has not been reported previously. Notably, we could still elicit this afterdepolarization for some time after the cessation of synaptic stimulation. In addition to NMDA receptors, the quinpirole-induced afterdepolarization also depended on L-type Ca2+ channels and was blocked by the selective L-type antagonist nimodipine. To confirm that D2Rs can elicit this afterdepolarization by enhancing Ca2+ (and Ca2+-dependent) currents, we measured whole-cell Ca2+ potentials that occur after blocking Na+ and K+ channels, and found quinpirole enhanced these potentials, while the selective D2R antagonist sulpiride had the opposite effect. Thus, D2Rs can elicit a Ca2+-channel-dependent afterdepolarization that powerfully modulates activity in specific prefrontal neurons. Through this mechanism, D2Rs might enhance outputs to subcortical structures, contribute to reward-related persistent firing, or increase the level of noise in prefrontal circuits.

[1]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[2]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[3]  Mary Kay Lobo,et al.  FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains , 2006, Nature Neuroscience.

[4]  E. Kandel,et al.  Transient and Selective Overexpression of Dopamine D2 Receptors in the Striatum Causes Persistent Abnormalities in Prefrontal Cortex Functioning , 2006, Neuron.

[5]  N. Kurzina,et al.  The effects of local application of D2 selective dopaminergic drugs into the medial prefrontal cortex of rats in a delayed spatial choice task , 2000, Behavioural Brain Research.

[6]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[7]  M. Häusser,et al.  Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites , 2011, Neuron.

[8]  T. Moore,et al.  CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE , 2011, Nature.

[9]  Rui Xiao,et al.  Dopamine modulates an intrinsic mGluR5-mediated depolarization underlying prefrontal persistent activity , 2009, Nature Neuroscience.

[10]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[11]  Kuei Yuan Tseng,et al.  D 2 Dopamine Receptors Recruit a GABA Component for Their Attenuation of Excitatory Synaptic Transmission in the Adult Rat Prefrontal Cortex , 2007 .

[12]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[13]  Anders D. Børglum,et al.  Genome-wide association study identifies five new schizophrenia loci , 2011, Nature Genetics.

[14]  Steven W. Johnson,et al.  Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents , 1997, Neuroscience Letters.

[15]  R. Godbout,et al.  Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: Evidence for the involvement of both dopaminergic and GABAergic components , 1992, Neuroscience.

[16]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[17]  R. Straub,et al.  Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Yasuo Kawaguchi,et al.  Firing-Pattern-Dependent Specificity of Cortical Excitatory Feed-Forward Subnetworks , 2008, The Journal of Neuroscience.

[19]  H. Singer,et al.  Increased prefrontal D2 protein in Tourette syndrome: a postmortem analysis of frontal cortex and striatum , 2004, Journal of the Neurological Sciences.

[20]  Joy A. Steele,et al.  Voltage- and time-dependent chloride currents in chick skeletal muscle cells grown in tissue culture , 1989, Pflügers Archiv.

[21]  M C O'Donovan,et al.  The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia , 2009, Molecular Psychiatry.

[22]  A. Bonci,et al.  The Dopamine D2 Receptor: New Surprises from an Old Friend , 2005, Neuron.

[23]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[24]  Taro Kiritani,et al.  Corticospinal-specific HCN expression in mouse motor cortex: I(h)-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control. , 2011, Journal of neurophysiology.

[25]  P. Forscher,et al.  Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons , 1985, The Journal of general physiology.

[26]  P. Goldman-Rakic,et al.  Subcellular localization of the dopamine D2 receptor and coexistence with the calcium‐binding protein neuronal calcium sensor‐1 in the primate prefrontal cortex , 2005, The Journal of comparative neurology.

[27]  C. Frith,et al.  Functional imaging and cognitive abnormalities , 1995, The Lancet.

[28]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[29]  S. Priori,et al.  CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and Autism , 2004, Cell.

[30]  M. G. Marciani,et al.  Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine , 1982, Brain Research.

[31]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[32]  Ji Hyun Ko,et al.  Extrastriatal dopaminergic dysfunction in tourette syndrome , 2010, Annals of neurology.

[33]  T. Robbins,et al.  The case of frontostriatal dysfunction in schizophrenia. , 1990, Schizophrenia bulletin.

[34]  Arthur Christopoulos,et al.  Functional Selectivity and Classical Concepts of Quantitative Pharmacology , 2007, Journal of Pharmacology and Experimental Therapeutics.

[35]  P. Goldman-Rakic,et al.  D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  H. Seo,et al.  A reservoir of time constants for memory traces in cortical neurons , 2011, Nature Neuroscience.

[37]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[38]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[39]  J. Tepper,et al.  A Calcium-Activated Nonselective Cation Conductance Underlies the Plateau Potential in Rat Substantia Nigra GABAergic Neurons , 2007, The Journal of Neuroscience.

[40]  P S Goldman-Rakic,et al.  Layer V neurons bear the majority of mRNAs encoding the five distinct dopamine receptor subtypes in the primate prefrontal cortex , 1998, Synapse.

[41]  J. Leckman,et al.  Frontal dopaminergic abnormality in Tourette syndrome: A postmortem analysis , 2007, Journal of the Neurological Sciences.

[42]  D. Durstewitz,et al.  The Dual-State Theory of Prefrontal Cortex Dopamine Function with Relevance to Catechol-O-Methyltransferase Genotypes and Schizophrenia , 2008, Biological Psychiatry.

[43]  B. Bunney,et al.  Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study. , 1989, The Journal of pharmacology and experimental therapeutics.

[44]  P. Goldman-Rakic,et al.  Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. , 1998, Archives of general psychiatry.

[45]  P. Goldman-Rakic,et al.  Selective D2 Receptor Actions on the Functional Circuitry of Working Memory , 2004, Science.

[46]  Charles J. Wilson,et al.  D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels. , 2008, Journal of neurophysiology.

[47]  J. Bargas,et al.  Spontaneous Voltage Oscillations in Striatal Projection Neurons in a Rat Corticostriatal Slice , 2003, The Journal of physiology.

[48]  Anatol C. Kreitzer,et al.  Dopamine Modulation of State-Dependent Endocannabinoid Release and Long-Term Depression in the Striatum , 2005, The Journal of Neuroscience.

[49]  P. Seeman,et al.  Dopamine receptor pharmacology. , 1994, Trends in pharmacological sciences.

[50]  Charles R. Yang,et al.  Dopamine D1/D5 Receptor Modulates State-Dependent Switching of Soma-Dendritic Ca2+ Potentials via Differential Protein Kinase A and C Activation in Rat Prefrontal Cortical Neurons , 2004, The Journal of Neuroscience.

[51]  K. Delaney,et al.  Contribution of a Calcium‐Activated Non‐Specific Conductance to NMDA Receptor‐Mediated Synaptic Potentials in Granule Cells of the Frog Olfactory Bulb , 2002, The Journal of physiology.

[52]  S. Floresco,et al.  Multiple Dopamine Receptor Subtypes in the Medial Prefrontal Cortex of the Rat Regulate Set-Shifting , 2006, Neuropsychopharmacology.

[53]  S. Floresco,et al.  Dissociable Contributions by Prefrontal D1 and D2 Receptors to Risk-Based Decision Making , 2011, The Journal of Neuroscience.

[54]  E. Miller,et al.  Learning Substrates in the Primate Prefrontal Cortex and Striatum: Sustained Activity Related to Successful Actions , 2009, Neuron.

[55]  Disorder Working Group Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4 , 2012, Nature Genetics.

[56]  Kuei Y Tseng,et al.  Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. , 2004, Cerebral cortex.

[57]  Manuel A. R. Ferreira,et al.  Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder , 2008, Nature Genetics.

[58]  P. Goldman-Rakic,et al.  Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  D. Plenz,et al.  Inverted-U Profile of Dopamine–NMDA-Mediated Spontaneous Avalanche Recurrence in Superficial Layers of Rat Prefrontal Cortex , 2006, The Journal of Neuroscience.

[60]  G. Mengod,et al.  Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. , 2009, Cerebral cortex.

[61]  T. Werge,et al.  CACNA1C (rs1006737) is associated with schizophrenia , 2010, Molecular Psychiatry.

[62]  S. Haj-Dahmane,et al.  Muscarinic receptors regulate two different calcium‐dependent non‐selective cation currents in rat prefrontal cortex , 1999, The European journal of neuroscience.

[63]  D. Lewis,et al.  A Neonatal Ventral Hippocampal Lesion Causes Functional Deficits in Adult Prefrontal Cortical Interneurons , 2008, The Journal of Neuroscience.

[64]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.

[65]  Joseph H Callicott,et al.  Genetic variation in CACNA1C affects brain circuitries related to mental illness. , 2010, Archives of general psychiatry.

[66]  J. Bargas,et al.  D1 Receptor Activation Enhances Evoked Discharge in Neostriatal Medium Spiny Neurons by Modulating an L-Type Ca2+ Conductance , 1997, The Journal of Neuroscience.

[67]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[68]  Kuei Y Tseng,et al.  Dopamine–Glutamate Interactions Controlling Prefrontal Cortical Pyramidal Cell Excitability Involve Multiple Signaling Mechanisms , 2004, The Journal of Neuroscience.

[69]  R. Lefkowitz,et al.  Differential Kinetic and Spatial Patterns of β-Arrestin and G Protein-mediated ERK Activation by the Angiotensin II Receptor* , 2004, Journal of Biological Chemistry.

[70]  D. Weinberger,et al.  Genes, dopamine and cortical signal-to-noise ratio in schizophrenia , 2004, Trends in Neurosciences.

[71]  S. Kanba,et al.  Nilvadipine is effective for chronic schizophrenia in a double-blind placebo-controlled study. off. , 1996, Journal of clinical psychopharmacology.

[72]  D. James Surmeier,et al.  Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons , 2010, Neuron.

[73]  S. Haj-Dahmane,et al.  Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. , 1998, Journal of neurophysiology.

[74]  S. Charpak,et al.  Effect of bicuculline on thalamic activity: a direct blockade of IAHP in reticularis neurons. , 1998, Journal of neurophysiology.

[75]  S. Deutsch,et al.  Effects of nifedipine, a calcium channel antagonist, on cognitive function in schizophrenic patients with tardive dyskinesia. , 1997, Clinical neuropharmacology.

[76]  Thomas K. Berger,et al.  Heterogeneity in the pyramidal network of the medial prefrontal cortex , 2006, Nature Neuroscience.

[77]  R. Mailman GPCR functional selectivity has therapeutic impact. , 2007, Trends in pharmacological sciences.

[78]  J. Weber,et al.  Identification of genetic markers associated with Gilles de la Tourette syndrome in an Afrikaner population. , 1998, American journal of human genetics.

[79]  Daniel Johnston,et al.  Projection-Specific Neuromodulation of Medial Prefrontal Cortex Neurons , 2010, The Journal of Neuroscience.

[80]  A. Young,et al.  Profound Changes in Dopaminergic Neurotransmission in the Prefrontal Cortex in Response to Flattening of the Diurnal Glucocorticoid Rhythm: Implications for Bipolar Disorder , 2009, Neuropsychopharmacology.

[81]  O Kiehn,et al.  Serotonin‐induced bistability of turtle motoneurones caused by a nifedipine‐sensitive calcium plateau potential. , 1989, The Journal of physiology.

[82]  D. Durstewitz,et al.  Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning , 2010, Neuron.

[83]  Kuei Yuan Tseng,et al.  D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex , 2007, Synapse.

[84]  D. Surmeier,et al.  D1/D5 Dopamine Receptor Activation Differentially Modulates Rapidly Inactivating and Persistent Sodium Currents in Prefrontal Cortex Pyramidal Neurons , 2001, The Journal of Neuroscience.

[85]  Leonardo Fazio,et al.  Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory , 2007, Proceedings of the National Academy of Sciences.

[86]  Vikaas S Sohal,et al.  Inhibitory coupling specifically generates emergent gamma oscillations in diverse cell types. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Godbout,et al.  Inhibitory influence of the mesocortical dopaminergic neurons on their target cells: electrophysiological and pharmacological characterization. , 1991, The Journal of pharmacology and experimental therapeutics.

[88]  Y. Kawaguchi,et al.  Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex , 2006, The Journal of Neuroscience.