Integrated waveguide coupled Si_3N_4 resonators in the ultrahigh-Q regime

The vast majority of work on waveguide-coupled resonators focuses on decreasing losses in the waveguide and coupling region. Here we present fully integrated resonators based on an ultralow-loss Si3N4 waveguide platform. By tailoring the directional coupler excitation to the resonators, we are able to achieve lower loss single-mode coupling to multimode waveguide widths compared to straight bus waveguide directional couplers. This allows us to demonstrate record-high integrated waveguide coupled intrinsic quality factor (Qint) values of 81 million at a 9.65 mm bend radius, with a future direction to both stronger and lower loss waveguide–resonator coupling. This result opens up integration possibilities for narrow linewidth integrated diode lasers, low noise feedback systems, microwave photonic research, and the ultrastable timing reference community.

[1]  T. Tsuchizawa,et al.  Monolithic Integration of Silicon-, Germanium-, and Silica-Based Optical Devices for Telecommunications Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Michael L Davenport,et al.  Title: font: times; size: 18 point; style: plain; justified: center; capitalization: first word and Names only , 2012 .

[3]  J. Bowers,et al.  Ultra‐low loss waveguide platform and its integration with silicon photonics , 2014 .

[4]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[5]  N. A. Olsson,et al.  Measurement of very low-loss silica on silicon waveguides with a ring resonator , 1991 .

[6]  J. Vig Introduction to Quartz Frequency Standards , 1992 .

[7]  Ken-ichi Ueda,et al.  Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions , 1995 .

[8]  D. McClelland,et al.  Phase-sensitive reflection technique for characterization of a fabry-perot interferometer. , 2000, Applied optics.

[9]  M. J. Shaw,et al.  Ultralow-loss silicon ring resonators , 2012, The 9th International Conference on Group IV Photonics (GFP).

[10]  C. Roeloffzen,et al.  Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing. , 2011, Optics express.

[11]  O. Schwelb,et al.  Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview , 2004, Journal of Lightwave Technology.

[12]  Caterina Ciminelli,et al.  High performance InP ring resonator for new generation monolithically integrated optical gyroscopes. , 2013, Optics express.

[13]  T Bååk,et al.  Silicon oxynitride; a material for GRIN optics. , 1982, Applied optics.

[14]  P. Maddaloni,et al.  Laser-Based Measurements for Time and Frequency Domain Applications : A Handbook , 2013 .

[15]  Dirk Bouwmeester,et al.  Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator. , 2014, Optics express.

[16]  John E. Bowers,et al.  Low-Loss Silicon Nitride AWG Demultiplexer Heterogeneously Integrated With Hybrid III–V/Silicon Photodetectors , 2014, Journal of Lightwave Technology.

[17]  H. Philipp Optical Properties of Silicon Nitride , 1973 .

[18]  Caterina Ciminelli,et al.  High-Q Spiral Resonator for Optical Gyroscope Applications: Numerical and Experimental Investigation , 2012, IEEE Photonics Journal.

[19]  Kostas Berberidis,et al.  Low Complexity Turbo Equalization for High Data Rate Wireless Communications , 2006, EURASIP J. Wirel. Commun. Netw..

[20]  José Capmany,et al.  Integrated microwave photonics , 2013 .

[21]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[22]  J. Bowers,et al.  Ultralow-Loss Planar $\hbox{Si}_{3}\hbox{N}_{4}$ Waveguide Polarizers , 2013, IEEE Photonics Journal.

[23]  Lute Maleki,et al.  Optical resonators with ten million finesse. , 2007, Optics express.

[24]  Ali Adibi,et al.  Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform. , 2013, Optics express.

[25]  Danijela Cabric,et al.  Novel Radio Architectures for UWB, 60 GHz, and Cognitive Wireless Systems , 2006, EURASIP J. Wirel. Commun. Netw..

[26]  Michal Lipson,et al.  Overcoming SiN film stress limitations for high quality factor ring resonators , 2013, 2013 IEEE Photonics Society Summer Topical Meeting Series.

[27]  V. Mizrahi,et al.  Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator , 1994 .

[28]  J. Bowers,et al.  Ultra-high quality factor planar Si3N4 ring resonators on Si substrates. , 2011, Optics express.