Author Correction: Genetically engineered cerebral organoids model brain tumor formation

[1]  Matija Snuderl,et al.  Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. , 2018, Biomaterials.

[2]  Justin M. Richner,et al.  Zika virus has oncolytic activity against glioblastoma stem cells , 2017, The Journal of experimental medicine.

[3]  J. Bagley,et al.  Fused cerebral organoids model interactions between brain regions , 2017, Nature Methods.

[4]  Alex A. Pollen,et al.  Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. , 2017, Cell stem cell.

[5]  F. Müller,et al.  An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome. , 2017, Cell reports.

[6]  H. Weishaupt,et al.  Modeling and Targeting MYC Genes in Childhood Brain Tumors , 2017, Genes.

[7]  Ning Liu,et al.  Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth , 2016, Cell.

[8]  Li-Huei Tsai,et al.  Efficient derivation of microglia-like cells from human pluripotent stem cells , 2016, Nature Medicine.

[9]  S. Aerts,et al.  An Ectopic Network of Transcription Factors Regulated by Hippo Signaling Drives Growth and Invasion of a Malignant Tumor Model , 2016, Current Biology.

[10]  Luana Mota Martins,et al.  Expression of estrogen and progesterone receptors in astrocytomas: a literature review , 2016, Clinics.

[11]  Madeline A. Lancaster,et al.  Stem Cell Models of Human Brain Development. , 2016, Cell stem cell.

[12]  C. Kuo,et al.  Organoids as Models for Neoplastic Transformation. , 2016, Annual review of pathology.

[13]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[14]  Qiulian Wu,et al.  A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. , 2016, Cancer research.

[15]  Roland Eils,et al.  New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs , 2016, Cell.

[16]  P. Varlet,et al.  The occurrence of intracranial rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation , 2016, Nature Communications.

[17]  Yasuo Iwadate,et al.  Epithelial-mesenchymal transition in glioblastoma progression , 2016, Oncology letters.

[18]  D. Hockemeyer,et al.  Human Stem Cell-based Disease Modeling: Prospects and Challenges This Review Comes from a Themed Issue on Differentiation and Disease the Advent of Stem Cell-based Disease Modeling and Current Challenges , 2022 .

[19]  M. Gerstein,et al.  FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders , 2015, Cell.

[20]  K. Watabe,et al.  Mechanisms regulating glioma invasion. , 2015, Cancer letters.

[21]  L. Hurst,et al.  Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells , 2014, Nature.

[22]  R. Nusse,et al.  An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control , 2014, Science.

[23]  K. Hatanpaa,et al.  The role of NF-κB in the pathogenesis of glioma , 2014, Molecular & cellular oncology.

[24]  Juergen A. Knoblich,et al.  Organogenesis in a dish: Modeling development and disease using organoid technologies , 2014, Science.

[25]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[26]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[27]  Madeline A. Lancaster,et al.  Cerebral organoids model human brain development and microcephaly , 2013, Nature.

[28]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[29]  H. Seol,et al.  Overexpression of CD99 Increases the Migration and Invasiveness of Human Malignant Glioma Cells. , 2012, Genes & cancer.

[30]  E. Arenas,et al.  WNT/β-catenin pathway activation in Myc immortalised cerebellar progenitor cells inhibits neuronal differentiation and generates tumours resembling medulloblastoma , 2012, British Journal of Cancer.

[31]  C. Sommer,et al.  Differential expression of HIF-1 in glioblastoma multiforme and anaplastic astrocytoma , 2012, International journal of oncology.

[32]  Rolf Bjerkvig,et al.  In vivo models of primary brain tumors: pitfalls and perspectives , 2012, Neuro-oncology.

[33]  J. Kuo,et al.  Activation of multiple ERBB family receptors mediates glioblastoma cancer stem-like cell resistance to EGFR-targeted inhibition. , 2012, Neoplasia.

[34]  L. Parada,et al.  Malignant Glioma: Lessons from Genomics, Mouse Models, and Stem Cells , 2012, Cell.

[35]  A. Kriegstein,et al.  Development and Evolution of the Human Neocortex , 2011, Cell.

[36]  Zev A. Binder,et al.  The Genetic Landscape of the Childhood Cancer Medulloblastoma , 2011, Science.

[37]  Yiai Tong,et al.  Subtypes of medulloblastoma have distinct developmental origins , 2010, Nature.

[38]  Annalisa Astolfi,et al.  CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. , 2010, The Journal of clinical investigation.

[39]  Boris Jerchow,et al.  Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates , 2009, Nature Genetics.

[40]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[41]  Gerald C. Chu,et al.  P53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation , 2008, Nature.

[42]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[43]  E. Holland,et al.  c-Myc and β-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice , 2008, Oncogene.

[44]  R. Mason,et al.  Pten haploinsufficiency accelerates formation of high-grade astrocytomas. , 2008, Cancer research.

[45]  S. Stevanović,et al.  Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy , 2007, British Journal of Cancer.

[46]  Dawen Zhao,et al.  Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. , 2005, Cancer cell.

[47]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[48]  C. Cepko,et al.  Electroporation and RNA interference in the rodent retina in vivo and in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[50]  A. Berns,et al.  Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. , 2000, Genes & development.

[51]  D. Gutmann,et al.  Alterations in the rap1 signaling pathway are common in human gliomas , 1997, Oncogene.

[52]  J. Trojanowski,et al.  In vivo and in vitro models of medulloblastomas and other primitive neuroectodermal brain tumors of childhood , 1994, Molecular and chemical neuropathology.

[53]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[54]  M. Berger,et al.  Proteases and the Biology of Glioma Invasion , 2004, Journal of Neuro-Oncology.

[55]  J. Biegel,et al.  Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. , 1999, Cancer research.