Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.

We posit the following hypothesis: Independently of whether malignant tumors are initiated by a fundamental reprogramming of gene expression or seeded by stem cells, "waves" of gene expression that promote metabolic changes occur during carcinogenesis, beginning with oncogene-mediated changes, followed by hypoxia-induced factor (HIF)-mediated gene expression, both resulting in the highly glycolytic "Warburg" phenotype and suppression of mitochondrial biogenesis. Because high proliferation rates in malignancies cause aglycemia and nutrient shortage, the third (second oncogene) "wave" of adaptation stimulates glutaminolysis, which in certain cases partially re-establishes oxidative phosphorylation; this involves the LKB1-AMPK-p53, PI3K-Akt-mTOR axes and MYC dysregulation. Oxidative glutaminolysis serves as an alternative pathway compensating for cellular ATP. Together with anoxic glutaminolysis it provides pyruvate, lactate, and the NADPH pool (alternatively to pentose phosphate pathway). Retrograde signaling from revitalized mitochondria might constitute the fourth "wave" of gene reprogramming. In turn, upon reversal of the two Krebs cycle enzymes, glutaminolysis may partially (transiently) function even during anoxia, thereby further promoting malignancy. The history of the carcinogenic process within each malignant tumor determines the final metabolic phenotype of the selected surviving cells, resulting in distinct cancer bioenergetic phenotypes ranging from the highly glycolytic "classic Warburg" to partial or enhanced oxidative phosphorylation. We discuss the bioenergetically relevant functions of oncogenes, the involvement of mitochondrial biogenesis/degradation in carcinogenesis, the yet unexplained Crabtree effect of instant glucose blockade of respiration, and metabolic signaling stemming from the accumulation of succinate, fumarate, pyruvate, lactate, and oxoglutarate by interfering with prolyl hydroxylase domain enzyme-mediated hydroxylation of HIFα prolines.

[1]  D. Tuveson,et al.  Modelling oncogenic Ras/Raf signalling in the mouse. , 2009, Current opinion in genetics & development.

[2]  H. Lenz Colon cancer stem cells: a new target in the war against cancer. , 2008, Gastrointestinal cancer research : GCR.

[3]  Alexander V. Zhdanov,et al.  PGC-1α is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells , 2009, Proceedings of the National Academy of Sciences.

[4]  Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. , 2005 .

[5]  R. Deberardinis,et al.  The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation , 2005, Oncogene.

[6]  C. Moraes,et al.  Mitochondrial biogenesis and turnover. , 2008, Cell calcium.

[7]  B. Halliwell,et al.  Human skin keloid fibroblasts display bioenergetics of cancer cells. , 2008, The Journal of investigative dermatology.

[8]  K. Smolková,et al.  Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. , 2010, The international journal of biochemistry & cell biology.

[9]  Russell G. Jones,et al.  Tumor suppressors and cell metabolism: a recipe for cancer growth. , 2009, Genes & development.

[10]  Nicola Zamboni,et al.  Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells , 2007, The Journal of cell biology.

[11]  Chi V. Dang,et al.  The interplay between MYC and HIF in cancer , 2008, Nature Reviews Cancer.

[12]  J. Pouysségur,et al.  A Dialogue between the Hypoxia-Inducible Factor and the Tumor Microenvironment , 2008, Cancer Microenvironment.

[13]  J. P. McCoy,et al.  The Mammalian Target of Rapamycin (mTOR) Pathway Regulates Mitochondrial Oxygen Consumption and Oxidative Capacity* , 2006, Journal of Biological Chemistry.

[14]  G. Watkins,et al.  The localisation and reduction of nuclear staining of PPARgamma and PGC-1 in human breast cancer. , 2004, Oncology reports.

[15]  P. Assumpção,et al.  MYC and gastric adenocarcinoma carcinogenesis. , 2008, World journal of gastroenterology.

[16]  Ru Wei,et al.  The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth , 2008, Nature.

[17]  S. Ropero,et al.  Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. Ortega,et al.  Glucose avidity of carcinomas. , 2009, Cancer letters.

[19]  A. Krainer,et al.  The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism , 2010, Proceedings of the National Academy of Sciences.

[20]  A. Galinier,et al.  Physiological diversity of mitochondrial oxidative phosphorylation. , 2006, American journal of physiology. Cell physiology.

[21]  T. Arnould,et al.  Mitochondrial biogenesis in mtDNA‐depleted cells involves a Ca2+‐dependent pathway and a reduced mitochondrial protein import , 2005, The FEBS journal.

[22]  F. Kuhajda Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. , 2000, Nutrition.

[23]  Daniel J Klionsky,et al.  The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy , 2008, EMBO reports.

[24]  Howard Y. Chang,et al.  MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. , 2006, Cancer research.

[25]  H. R. Zielke,et al.  Glutamine: a major energy source for cultured mammalian cells. , 1984, Federation proceedings.

[26]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[27]  I. Prior,et al.  Compartmentalized signalling: Ras proteins and signalling nanoclusters , 2009, The FEBS journal.

[28]  P. Puigserver,et al.  Metabolic adaptations through the PGC‐1α and SIRT1 pathways , 2008 .

[29]  A. Yalçin,et al.  Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. , 2009, Experimental and molecular pathology.

[30]  B. Hoffman,et al.  Apoptotic signaling by c-MYC , 2008, Oncogene.

[31]  Keshav K. Singh,et al.  Mitochondrial impairment in p53-deficient human cancer cells. , 2003, Mutagenesis.

[32]  Ulrich Müller,et al.  Mutations in SDHC cause autosomal dominant paraganglioma, type 3 , 2000, Nature Genetics.

[33]  D. Simeone,et al.  Pancreatic cancer stem cells. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[34]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[35]  S. Weinhouse Isozyme alterations, gene regulation and the neoplastic transformation. , 1983, Advances in enzyme regulation.

[36]  R A Jungmann,et al.  c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Z. Elazar,et al.  Oxidation as a Post-Translational Modification that Regulates Autophagy , 2007, Autophagy.

[38]  R. Xavier,et al.  Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes , 2009, Autophagy.

[39]  P. Ježek,et al.  Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. , 2009, The international journal of biochemistry & cell biology.

[40]  C. Lelliott,et al.  Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. , 2003, The Biochemical journal.

[41]  J. Menéndez,et al.  The tyrosine kinase receptor HER2 (erbB‐2): From oncogenesis to adipogenesis , 2008, Journal of cellular biochemistry.

[42]  N. Koitabashi,et al.  Competitive Binding of CREB and ATF2 to cAMP/ATF Responsive Element Regulates eNOS Gene Expression in Endothelial Cells , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[43]  J. Hayashi,et al.  Enhanced glycolysis induced by mtDNA mutations does not regulate metastasis , 2008, FEBS letters.

[44]  L. Reitzer,et al.  Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. , 1979, The Journal of biological chemistry.

[45]  W. Kaelin The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer , 2008, Nature Reviews Cancer.

[46]  E. Gnaiger,et al.  Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. , 1990, Biochimica et biophysica acta.

[47]  A. Giatromanolaki,et al.  Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer , 2005, Clinical & Experimental Metastasis.

[48]  V Clower Cynthia,et al.  選択的スプライシングレプレッサーhnRNP A1/A2とPTBはピルビン酸キナーゼアイソフォーム発現と細胞代謝に影響する , 2010 .

[49]  S. Jackowski,et al.  Activity of the phosphatidylcholine biosynthetic pathway modulates the distribution of fatty acids into glycerolipids in proliferating cells. , 2000, Biochimica et biophysica acta.

[50]  W. Linehan,et al.  LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer , 2009, Molecular Cancer Therapeutics.

[51]  Jiandie D. Lin,et al.  Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. , 2005, Cell metabolism.

[52]  J. Settleman,et al.  Isoform-specific ras functions in development and cancer. , 2009, Future oncology.

[53]  Michael Höckel,et al.  Oxygenation gain factor: a novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. , 2003, Cancer research.

[54]  Emma Saavedra,et al.  Energy metabolism in tumor cells , 2007, The FEBS journal.

[55]  M. Dalakas,et al.  Mitochondrial myopathy caused by long-term zidovudine therapy. , 1990, The New England journal of medicine.

[56]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[57]  J. Hoek,et al.  Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. , 2005, Cancer research.

[58]  Simon C Watkins,et al.  Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. , 2007, The American journal of pathology.

[59]  R. Youle,et al.  The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division , 2007, The Journal of cell biology.

[60]  E. Gottlieb,et al.  Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer , 2006, Oncogene.

[61]  M. Yaffe,et al.  A Role for Ubiquitination in Mitochondrial Inheritance in Saccharomyces cerevisiae , 1999, The Journal of cell biology.

[62]  S. Dimauro,et al.  Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. , 1989, The New England journal of medicine.

[63]  J. Ghysdael,et al.  Expression of the v-src or v-fps oncogene increases fructose 2,6-bisphosphate in chick-embryo fibroblasts. Novel mechanism for the stimulation of glycolysis by retroviruses. , 1986, The Biochemical journal.

[64]  J. M. Izquierdo,et al.  A Conserved Mechanism for Controlling the Translation of β-F1-ATPase mRNA between the Fetal Liver and Cancer Cells* , 2000, The Journal of Biological Chemistry.

[65]  Walter Pfaller,et al.  Impact of Culture Conditions, Culture Media Volumes, and Glucose Content on Metabolic Properties of Renal Epithelial Cell Cultures , 1999, Cellular Physiology and Biochemistry.

[66]  G. Arismendi-Morillo Electron microscopy morphology of the mitochondrial network in human cancer. , 2009, The international journal of biochemistry & cell biology.

[67]  M. Ausserlechner,et al.  Isotype‐specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation , 2008, International journal of cancer.

[68]  G. Wahl,et al.  c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. , 2002, Molecular cell.

[69]  Lilia Alberghina,et al.  Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. , 2006, Biochimica et biophysica acta.

[70]  E. Génot,et al.  Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia , 2010, Journal of bioenergetics and biomembranes.

[71]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres , 2002, Nature.

[72]  N. Hamasaki,et al.  Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. , 2007, Mitochondrion.

[73]  Marta Cascante,et al.  K-ras Codon-Specific Mutations Produce Distinctive Metabolic Phenotypes in Human Fibroblasts , 2005 .

[74]  P. Acebo,et al.  Cancer abolishes the tissue type-specific differences in the phenotype of energetic metabolism. , 2009, Translational oncology.

[75]  J. Teckman,et al.  Mitochondrial autophagy and injury in the liver in α1-antitrypsin deficiency , 2004 .

[76]  Tomoyuki Suzuki,et al.  Up‐regulation of Na+,K+‐ATPase α3‐isoform and down‐regulation of the α1‐isoform in human colorectal cancer , 2004 .

[77]  Mohamed H. Sayegh,et al.  Identification of cells initiating human melanomas , 2008, Nature.

[78]  C. Gustafsson,et al.  Mitochondrial transcription and its regulation in mammalian cells. , 2007, Trends in biochemical sciences.

[79]  C. Lelliott,et al.  Mitochondrial Fusion Is Increased by the Nuclear Coactivator PGC-1β , 2008, PloS one.

[80]  Richard P. Hill,et al.  The hypoxic tumour microenvironment and metastatic progression , 2004, Clinical & Experimental Metastasis.

[81]  Peng Huang,et al.  Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism , 2006, The Journal of cell biology.

[82]  Rodrigue Rossignol,et al.  Energy Substrate Modulates Mitochondrial Structure and Oxidative Capacity in Cancer Cells , 2004, Cancer Research.

[83]  Mark W. Dewhirst,et al.  Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response , 2008, Nature Reviews Cancer.

[84]  C. Dang,et al.  MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities , 2009, Clinical Cancer Research.

[85]  V. E. Price,et al.  Anemia in cancer. , 1958, Advances in cancer research.

[86]  G. Arismendi-Morillo,et al.  Biological : Full-length Ultrastructural mitochondrial pathology in human astrocytic tumors : potentials implications pro-therapeutics strategies , 2008 .

[87]  R. Scarpulla Transcriptional paradigms in mammalian mitochondrial biogenesis and function. , 2008, Physiological reviews.

[88]  G. Semenza,et al.  HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. , 2007, Cancer cell.

[89]  P. Vaupel,et al.  Tumor hypoxia and malignant progression. , 2009, Methods in enzymology.

[90]  Peter Vaupel,et al.  Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. , 2008, The oncologist.

[91]  M. Guppy,et al.  The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. , 1993, European journal of biochemistry.

[92]  F. Saad Src as a therapeutic target in men with prostate cancer and bone metastases , 2009, BJU international.

[93]  K. Smolková,et al.  Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. , 2009, The international journal of biochemistry & cell biology.

[94]  A. Chatterjee,et al.  Mitochondrial DNA mutations in human cancer , 2006, Oncogene.

[95]  F. Bosch,et al.  Evidence from transgenic mice that myc regulates hepatic glycolysis , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[96]  I. Hassinen,et al.  Inhibition of Hypoxia-inducible Factor (HIF) Hydroxylases by Citric Acid Cycle Intermediates , 2007, Journal of Biological Chemistry.

[97]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[98]  R. Deberardinis,et al.  The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. , 2007, Genes & development.

[99]  D. Rapaport,et al.  Biogenesis of mitochondrial outer membrane proteins. , 2009, Biochimica et biophysica acta.

[100]  P. Pedersen,et al.  Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells. , 1984, Cancer research.

[101]  P. Pedersen,et al.  Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen , 2007, Journal of bioenergetics and biomembranes.

[102]  R. Minami,et al.  Glut1 expression in T1 and T2 stage colorectal carcinomas: its relationship to clinicopathological features. , 2001, European journal of cancer.

[103]  Marc Dellian,et al.  Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[104]  H. Lyng,et al.  Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis , 2000, British Journal of Cancer.

[105]  E. Espinosa,et al.  HuR and the bioenergetic signature of breast cancer: a low tumor expression of the RNA-binding protein predicts a higher risk of disease recurrence. , 2008, Carcinogenesis.

[106]  A. Alavi,et al.  Akt Stimulates Aerobic Glycolysis in Cancer Cells , 2004, Cancer Research.

[107]  John L Cleveland,et al.  Myc pathways provoking cell suicide and cancer , 2003, Oncogene.

[108]  A. Giatromanolaki,et al.  PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer , 2008, British Journal of Cancer.

[109]  P. Vaupel Prognostic potential of the pre-therapeutic tumor oxygenation status. , 2009, Advances in experimental medicine and biology.

[110]  E. Rofstad,et al.  The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. , 2005, Cancer research.

[111]  M. Rigoulet,et al.  Mitochondrial Oxidative Phosphorylation Is Regulated by Fructose 1,6-Bisphosphate , 2008, Journal of Biological Chemistry.

[112]  Marty C. Brandon,et al.  Mitochondrial mutations in cancer , 2006, Oncogene.

[113]  P. Puigserver,et al.  GCN5-mediated Transcriptional Control of the Metabolic Coactivator PGC-1β through Lysine Acetylation* , 2009, The Journal of Biological Chemistry.

[114]  H. R. Zielke,et al.  Growth of human diploid fibroblasts in the absence of glucose utilization. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[115]  R. Moreno-Sánchez,et al.  The bioenergetics of cancer: Is glycolysis the main ATP supplier in all tumor cells? , 2009, BioFactors.

[116]  J. M. Izquierdo,et al.  Mitochondrial Biogenesis in the Liver during Development and Oncogenesis , 1997, Journal of bioenergetics and biomembranes.

[117]  Daniel J Klionsky,et al.  Eating the endoplasmic reticulum: quality control by autophagy. , 2007, Trends in cell biology.

[118]  A. Maitra,et al.  Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck , 2007, Proceedings of the National Academy of Sciences.

[119]  Kathy Pfeiffer,et al.  Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. , 2002, Carcinogenesis.

[120]  M. Cole,et al.  Mechanism of transcriptional activation by the Myc oncoproteins. , 2006, Seminars in cancer biology.

[121]  J. Auwerx,et al.  Transcriptional coregulators in the control of energy homeostasis. , 2007, Trends in cell biology.

[122]  M. Dewhirst,et al.  Temporal changes in PO2 of R3230AC tumors in Fischer-344 rats. , 1998, International journal of radiation oncology, biology, physics.

[123]  M. Patel,et al.  Regulation of the pyruvate dehydrogenase complex. , 2006, Biochemical Society transactions.

[124]  J. Ingwall Energy metabolism in heart failure and remodelling. , 2008, Cardiovascular research.

[125]  A. Ortega,et al.  The tumor suppressor function of mitochondria: translation into the clinics. , 2009, Biochimica et biophysica acta.

[126]  J. Hayashi,et al.  ROS-Generating Mitochondrial DNA Mutations Can Regulate Tumor Cell Metastasis , 2008, Science.

[127]  Robert A. Harris,et al.  Pyruvate Dehydrogenase Complex Activity Controls Metabolic and Malignant Phenotype in Cancer Cells* , 2008, Journal of Biological Chemistry.

[128]  Chad E Jones,et al.  Stimulation of mitochondrial biogenesis and autophagy by lipopolysaccharide in the neonatal rat cardiomyocyte protects against programmed cell death. , 2008, Journal of molecular and cellular cardiology.

[129]  R. Scarpulla,et al.  Nuclear Control of Respiratory Chain Expression by Nuclear Respiratory Factors and PGC‐1‐Related Coactivator , 2008, Annals of the New York Academy of Sciences.

[130]  Wei Gu,et al.  Modes of p53 Regulation , 2009, Cell.

[131]  J. Troppmair,et al.  Regulation of pyruvate kinase type M2 by A-Raf: a possible glycolytic stop or go mechanism. , 2007, Anticancer research.

[132]  G. Semenza Targeting HIF-1 for cancer therapy , 2003, Nature Reviews Cancer.

[133]  E. Clementi,et al.  Mitochondrial Biogenesis in Mammals: The Role of Endogenous Nitric Oxide , 2003, Science.

[134]  N. Denko,et al.  HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. , 2006, Cell metabolism.

[135]  G. Schatten,et al.  Development: Ubiquitin tag for sperm mitochondria , 1999, Nature.

[136]  L. Korotchkina,et al.  The biochemistry of the pyruvate dehydrogenase complex * , 2003 .

[137]  C. Abbadie,et al.  Senescent keratinocytes die by autophagic programmed cell death. , 2009, The American journal of pathology.

[138]  John C Reed,et al.  The bioenergetic signature of cancer: a marker of tumor progression. , 2002, Cancer research.

[139]  Min Wu,et al.  Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. , 2007, American journal of physiology. Cell physiology.

[140]  P. Leder,et al.  Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. , 2006, Cancer cell.

[141]  R. Moreno-Sánchez,et al.  Multisite control of the Crabtree effect in ascites hepatoma cells. , 2001, European journal of biochemistry.

[142]  H. Moch,et al.  Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL , 2003, Nature.

[143]  D. Klionsky,et al.  Autophagy and Vacuole Homeostasis: A Case for Self-Degradation? , 2007, Autophagy.

[144]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[145]  P. Vaupel,et al.  Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. , 2000, International journal of oncology.

[146]  P. Puigserver,et al.  Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α , 2006, Cell.

[147]  Yidong Bai,et al.  Number matters: control of mammalian mitochondrial DNA copy number. , 2009, Journal of genetics and genomics = Yi chuan xue bao.

[148]  V. Young,et al.  Glutamine: the emperor or his clothes? , 2001, The Journal of nutrition.

[149]  E. Gottlieb,et al.  Cell-Permeating α-Ketoglutarate Derivatives Alleviate Pseudohypoxia in Succinate Dehydrogenase-Deficient Cells , 2007, Molecular and Cellular Biology.

[150]  K. Pfeiffer,et al.  Mitochondrial complex I is deficient in renal oncocytomas. , 2003, Carcinogenesis.

[151]  R. F. Melo,et al.  Occurrence of the Crabtree effect in HeLa cells , 1998, Cell biochemistry and function.

[152]  D. Green,et al.  Cytoplasmic functions of the tumour suppressor p53 , 2009, Nature.

[153]  B. Spiegelman Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. , 2007, Novartis Foundation symposium.

[154]  T. Cotter,et al.  Mechanisms of ROS modulated cell survival during carcinogenesis. , 2008, Cancer letters.

[155]  B. Ebert,et al.  Regulation of Transcription by Hypoxia Requires a Multiprotein Complex That Includes Hypoxia-Inducible Factor 1, an Adjacent Transcription Factor, and p300/CREB Binding Protein , 1998, Molecular and Cellular Biology.

[156]  K. Vousden,et al.  Modulation of intracellular ROS levels by TIGAR controls autophagy , 2009, The EMBO journal.

[157]  P. Puigserver,et al.  AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity , 2009, Nature.

[158]  M. Yuneva Finding an “Achilles’ heel” of cancer: The role of glucose and glutamine metabolism in the survival of transformed cells , 2008, Cell cycle.

[159]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[160]  R. Franklin,et al.  Tumor cell metabolism: the marriage of molecular genetics and proteomics with cellular intermediary metabolism; proceed with caution! , 2006, Molecular Cancer.

[161]  L G Strauss,et al.  The applications of PET in clinical oncology. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[162]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[163]  Emilio Clementi,et al.  Calorie Restriction Promotes Mitochondrial Biogenesis by Inducing the Expression of eNOS , 2005, Science.

[164]  C. Thompson,et al.  HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. , 2007, Cancer cell.

[165]  Y. Yoon,et al.  Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[166]  R. Shaw,et al.  Glucose metabolism and cancer. , 2006, Current opinion in cell biology.

[167]  Jonghwan Kim,et al.  Global Identification of Myc Target Genes Reveals Its Direct Role in Mitochondrial Biogenesis and Its E-Box Usage In Vivo , 2008, PloS one.

[168]  Michael Höckel,et al.  Detection and characterization of tumor hypoxia using pO2 histography. , 2007, Antioxidants & redox signaling.

[169]  N. Isern,et al.  c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry , 2009, Oncogene.

[170]  Fionnuala Morrish,et al.  c-MYC apoptotic function is mediated by NRF-1 target genes. , 2003, Genes & development.

[171]  P. Bénit,et al.  S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. , 2007, Cell metabolism.

[172]  R. Wiesner,et al.  Clonal expansion of different mtDNA variants without selective advantage in solid tumors. , 2009, Mutation research.

[173]  R. Parchment,et al.  The Biological Basis of Cancer: Oncology: The difficult task of eradicating caricatures of normal tissue renewal in the human patient , 2006 .

[174]  F. López-Ríos,et al.  Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. , 2007, Cancer research.

[175]  S. Rodríguez-Enríquez,et al.  Selective degradation of mitochondria by mitophagy. , 2007, Archives of biochemistry and biophysics.

[176]  Nektarios Tavernarakis,et al.  Functional and physical interaction between Bcl‐XL and a BH3‐like domain in Beclin‐1 , 2007, The EMBO journal.

[177]  Y. Mo,et al.  Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. , 2008, Cancer research.

[178]  M. Lenardo,et al.  The selectivity of autophagy and its role in cell death and survival , 2008, Autophagy.

[179]  Robert J. Gillies,et al.  A microenvironmental model of carcinogenesis , 2008, Nature Reviews Cancer.

[180]  Daniel E Bauer,et al.  ATP citrate lyase inhibition can suppress tumor cell growth. , 2005, Cancer cell.

[181]  D. Hardie,et al.  AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy , 2007, Nature Reviews Molecular Cell Biology.

[182]  P. Puigserver,et al.  The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α , 2008, Proceedings of the National Academy of Sciences.

[183]  H. Kole,et al.  Regulation of 6-phosphofructo-1-kinase activity in ras-transformed rat-1 fibroblasts. , 1991, Archives of biochemistry and biophysics.

[184]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[185]  David G. Watson,et al.  Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. , 2005, Cancer cell.

[186]  G. Semenza,et al.  HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells , 2007, Cell.

[187]  Johan Auwerx,et al.  PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure , 2009, Current opinion in lipidology.

[188]  N. Denko,et al.  Hypoxia, HIF1 and glucose metabolism in the solid tumour , 2008, Nature Reviews Cancer.

[189]  Max S Wicha,et al.  Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[190]  G. Semenza Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. , 2007, The Biochemical journal.

[191]  S. Ménard,et al.  Identification of Breast Cancer-Restricted Antigens by Antibody Screening of SKBR3 cDNA Library Using a Preselected Patient's Serum , 2002, Breast Cancer Research and Treatment.

[192]  Guy C. Brown,et al.  Nitric oxide stimulates PC12 cell proliferation via cGMP and inhibits at higher concentrations mainly via energy depletion. , 2006, Nitric oxide : biology and chemistry.

[193]  Kjell Hultenby,et al.  Mitochondrial transcription factor A regulates mtDNA copy number in mammals. , 2004, Human molecular genetics.

[194]  Gurmit Singh,et al.  Mitochondria and Cancer , 2013, BioMed research international.

[195]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[196]  Gregory Stephanopoulos,et al.  Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line* , 2008, Journal of Biological Chemistry.

[197]  E. Wills,et al.  An unusual myopathy: Speckled muscle fibers due to enlarged mitochondria , 2007, Muscle & nerve.

[198]  J. Vicencio,et al.  BH3-Only Proteins and BH3 Mimetics Induce Autophagy by Competitively Disrupting the Interaction between Beclin 1 and Bcl-2/Bcl-XL , 2007, Autophagy.

[199]  A. Garnier,et al.  Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. , 2008, Cardiovascular research.

[200]  Eyal Gottlieb,et al.  Mitochondrial tumour suppressors: a genetic and biochemical update , 2005, Nature Reviews Cancer.

[201]  Yau-Huei Wei,et al.  Mitochondrial DNA Instability and Metabolic Shift in Human Cancers , 2009, International journal of molecular sciences.

[202]  E. Nisoli,et al.  Nitric oxide and mitochondrial biogenesis , 2006, Journal of Cell Science.

[203]  G. Semenza,et al.  HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. , 2006, Cell metabolism.

[204]  Anthony Mancuso,et al.  Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction , 2008, Proceedings of the National Academy of Sciences.

[205]  Anastasia Kralli,et al.  Transcriptional control of mitochondrial biogenesis and function. , 2009, Annual review of physiology.

[206]  Å. Fransson,et al.  The Miro GTPases: At the heart of the mitochondrial transport machinery , 2009, FEBS letters.

[207]  Y. Shimada,et al.  Profiles of carbohydrate-metabolizing enzymes in human hepatocellular carcinomas and preneoplastic livers. , 1988, Cancer research.

[208]  S. Schreiber,et al.  Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[209]  S. Naylor,et al.  A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. , 2009, Human molecular genetics.

[210]  E. Robin,et al.  Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells , 1988, Journal of cellular physiology.

[211]  Gary Fiskum,et al.  Glutamine metabolism in AS-30D hepatoma cells. Evidence for its conversion into lipids via reductive carboxylation , 1995, Molecular and Cellular Biochemistry.

[212]  E. Shoubridge,et al.  Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skeletal muscle fiber segments in mitochondrial disease , 1990, Cell.

[213]  A. Ortega,et al.  A message emerging from development: the repression of mitochondrial β-F1-ATPase expression in cancer , 2007, Journal of bioenergetics and biomembranes.

[214]  S. Safe,et al.  Hormonal regulation of lactate dehydrogenase-A through activation of protein kinase C pathways in MCF-7 breast cancer cells. , 2004, Biochemical and biophysical research communications.

[215]  Robert A. Harris,et al.  Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism , 2008, Nature Genetics.

[216]  F. de Longueville,et al.  CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes , 2006, Journal of Cell Science.

[217]  Jin-Shui Pan,et al.  Reactive oxygen species: A double-edged sword in oncogenesis , 2009 .

[218]  E. Cadenas,et al.  Tumor Cell Phenotype Is Sustained by Selective MAPK Oxidation in Mitochondria , 2008, PloS one.

[219]  J. Uriel Cancer, retrodifferentiation, and the myth of Faust. , 1976, Cancer research.

[220]  T. Cotter,et al.  Apoptosis and cancer: the genesis of a research field , 2009, Nature Reviews Cancer.

[221]  K. Vousden,et al.  p53: new roles in metabolism. , 2007, Trends in cell biology.

[222]  R. Hill,et al.  Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. , 2001, Cancer research.

[223]  L. Jacobs,et al.  Fatty acid synthesis: a potential selective target for antineoplastic therapy. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[224]  P. Ježek,et al.  Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. , 2005, The international journal of biochemistry & cell biology.

[225]  S. Dimauro,et al.  Myoclonic epilepsy and ragged‐red fibers with cytochrome oxidase deficiency: Neuropathology, biochemistry, and molecular genetics , 1989, Annals of neurology.

[226]  K. Hirakawa,et al.  Prognostic predictive value of 18F-fluorodeoxyglucose positron emission tomography for patients with pancreatic cancer. , 2001, International journal of oncology.

[227]  Chi V Dang,et al.  Cancer's molecular sweet tooth and the Warburg effect. , 2006, Cancer research.

[228]  M. Sobrinho-Simões,et al.  Mitochondria and cancer , 2009, Virchows Archiv.

[229]  Zvulun Elazar,et al.  ROS, mitochondria and the regulation of autophagy. , 2007, Trends in cell biology.

[230]  Peter Vaupel,et al.  Tumor microenvironmental physiology and its implications for radiation oncology. , 2004, Seminars in radiation oncology.

[231]  P. Leedman,et al.  Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells. , 2002, The Biochemical journal.

[232]  R. Rossignol,et al.  Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. , 2009, Frontiers in bioscience.

[233]  Michael D. Cole,et al.  Transcription-independent functions of MYC: regulation of translation and DNA replication , 2008, Nature Reviews Molecular Cell Biology.

[234]  J R Griffiths,et al.  Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. , 2005, Human molecular genetics.

[235]  David E. Misek,et al.  The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. , 2004, Carcinogenesis.

[236]  E. Espinosa,et al.  Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. , 2005, Carcinogenesis.

[237]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[238]  Huasheng Lu,et al.  Hypoxia-inducible Factor 1 Activation by Aerobic Glycolysis Implicates the Warburg Effect in Carcinogenesis* , 2002, The Journal of Biological Chemistry.

[239]  P. Hammerman,et al.  Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. , 2004, TIBS -Trends in Biochemical Sciences. Regular ed.

[240]  R J Hodgkiss,et al.  Spatial relationship between hypoxia and the (perfused) vascular network in a human glioma xenograft: a quantitative multi-parameter analysis. , 2000, International journal of radiation oncology, biology, physics.

[241]  R. Youle,et al.  Role of the Ubiquitin Conjugation System in the Maintenance of Mitochondrial Homeostasis , 2008, Annals of the New York Academy of Sciences.

[242]  Jaap Keijer,et al.  HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. , 2008, Carcinogenesis.

[243]  Yan A. Su,et al.  Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy , 2009, Molecular Cancer Therapeutics.

[244]  J. Ellison,et al.  Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD , 2008, European Journal of Human Genetics.

[245]  H. Christofk,et al.  Pyruvate kinase M2 is a phosphotyrosine-binding protein , 2008, Nature.

[246]  P. Navas,et al.  Coenzyme Q deficiency triggers mitochondria degradation by mitophagy , 2009, Autophagy.

[247]  M. Priault,et al.  Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast , 2005, Cell Death and Differentiation.

[248]  C. Thompson,et al.  ATP citrate lyase is an important component of cell growth and transformation , 2005, Oncogene.

[249]  R. Orlando,et al.  Multiple molecular forms of lactate dehydrogenase and glucose 6‐phosphate dehydrogenase in normal and abnormal human breast tissues , 1976, Cancer.

[250]  Marta Martínez,et al.  Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. , 2004, The Biochemical journal.

[251]  T. Tsuruo,et al.  De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy , 2009, British Journal of Cancer.

[252]  P. Vaupel,et al.  Pyruvate kinase type M2: a crossroad in the tumor metabolome , 2002, British Journal of Nutrition.

[253]  D. Klionsky,et al.  Mitophagy in Yeast Occurs through a Selective Mechanism* , 2008, Journal of Biological Chemistry.

[254]  G. Thomas,et al.  Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. , 2006, Cell metabolism.

[255]  J. Martinou,et al.  Mitochondrial dynamics and cancer. , 2009, Seminars in cancer biology.

[256]  M. Nikiforova,et al.  Diagnostic Use of IDH1/2 Mutation Analysis in Routine Clinical Testing of Formalin-Fixed, Paraffin-Embedded Glioma Tissues , 2009, Journal of neuropathology and experimental neurology.

[257]  A. John Dysfunctional mitochondria, not oxygen insufficiency, cause cancer cells to produce inordinate amounts of lactic acid: the impact of this on the treatment of cancer. , 2001, Medical hypotheses.

[258]  R. Burd,et al.  Absence of Crabtree effect in human melanoma cells adapted to growth at low pH: reversal by respiratory inhibitors. , 2001, Cancer research.

[259]  A. Koong,et al.  Loss of PTEN facilitates HIF-1-mediated gene expression. , 2000, Genes & development.

[260]  Russell G. Jones,et al.  AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. , 2005, Molecular cell.

[261]  P. Puigserver,et al.  GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. , 2006, Cell metabolism.

[262]  M. Guppy,et al.  Cancer metabolism: facts, fantasy, and fiction. , 2004, Biochemical and biophysical research communications.