Scaling-Rotation Distance and Interpolation of Symmetric Positive-Definite Matrices

We introduce a new geometric framework for the set of symmetric positive-definite (SPD) matrices, aimed at characterizing deformations of SPD matrices by individual scaling of eigenvalues and rotation of eigenvectors of the SPD matrices. To characterize the deformation, the eigenvalue-eigenvector decomposition is used to find alternative representations of SPD matrices and to form a Riemannian manifold so that scaling and rotations of SPD matrices are captured by geodesics on this manifold. The problems of nonunique eigen-decompositions and eigenvalue multiplicities are addressed by finding minimal-length geodesics, which gives rise to a distance and an interpolation method for SPD matrices. Computational procedures for evaluating the minimal scaling-rotation deformations and distances are provided for the most useful cases of $2 \times 2$ and $3 \times 3$ SPD matrices. In the new geometric framework, minimal scaling-rotation curves interpolate eigenvalues at constant logarithmic rate, and eigenvectors at...

[1]  Jean Gallier,et al.  Geometric Methods and Applications: For Computer Science and Engineering , 2000 .

[2]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[3]  Leif Ellingson,et al.  Nonparametric two-sample tests on homogeneous Riemannian manifolds, Cholesky decompositions and Diffusion Tensor Image analysis , 2013, J. Multivar. Anal..

[4]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[5]  Hongtu Zhu,et al.  Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging , 2009, Journal of the American Statistical Association.

[6]  Christophe Phillips,et al.  Anisotropy Preserving DTI Processing , 2014, International Journal of Computer Vision.

[7]  Sungkyu Jung,et al.  A statistical approach to set classification by feature selection with applications to classification of histopathology images , 2014, Biometrics.

[8]  R. Dougherty,et al.  Group Comparison of Eigenvalues and Eigenvectors of Diffusion Tensors , 2010, Journal of the American Statistical Association.

[9]  Rachid Deriche,et al.  DTI segmentation by statistical surface evolution , 2006, IEEE Transactions on Medical Imaging.

[10]  Jie Peng,et al.  Diffusion tensor smoothing through weighted Karcher means. , 2013, Electronic journal of statistics.

[11]  L. Mirsky A trace inequality of John von Neumann , 1975 .

[12]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[13]  Jonathan E. Taylor,et al.  Inference for eigenvalues and eigenvectors of Gaussian symmetric matrices , 2008, 0901.3290.

[14]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[15]  Silvere Bonnabel,et al.  Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..

[16]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[17]  Isabelle E. Magnin,et al.  Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI , 2012, Medical Image Anal..

[18]  Maher Moakher,et al.  To appear in: SIAM J. MATRIX ANAL. APPL. MEANS AND AVERAGING IN THE GROUP OF ROTATIONS∗ , 2002 .

[19]  Maher Moakher,et al.  The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data , 2011, Journal of Mathematical Imaging and Vision.

[20]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[21]  Rikard Berthilsson,et al.  A Statistical Theory of Shape , 1998, SSPR/SPR.

[22]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[23]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[24]  Hsiao-Wen Chung,et al.  Effects of interpolation methods in spatial normalization of diffusion tensor imaging data on group comparison of fractional anisotropy. , 2009, Magnetic resonance imaging.

[25]  Paul M. Thompson,et al.  Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors , 2008, IEEE Transactions on Medical Imaging.

[26]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[27]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[28]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[29]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[30]  David W. Jacobs,et al.  Riemannian Metric Learning for Symmetric Positive Definite Matrices , 2015, ArXiv.

[31]  J. S. Marron,et al.  Local polynomial regression for symmetric positive definite matrices , 2012, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[32]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[33]  R. Dougherty,et al.  FALSE DISCOVERY RATE ANALYSIS OF BRAIN DIFFUSION DIRECTION MAPS. , 2008, The annals of applied statistics.