Local Similarity Number and its Application to Object Tracking

In this paper, we present a tracking technique utilizing a simple saliency visual descriptor. Initially, we define a visual descriptor named local similarity pattern that mimics the famous texture operator local binary patterns. The key difference is that it assigns each pixel a code based on the similarity to the neighbouring pixels. Later, we simplify this descriptor to a local saliency operator which counts the number of similar pixels in a neighbourhood. We name this operator local similarity number (LSN). We apply the local similarity number operator to measure the amount of saliency in a target patch and model the target. The proposed tracking algorithm uses a joint saliency-colour histogram to represent the target in a mean-shift tracking framework. We will show that the proposed saliency-colour target representation outperforms texture-colour where texture modelled by local binary patterns and colour target representation techniques are used.

[1]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[3]  Larry S. Davis,et al.  Texture Analysis Using Generalized Co-Occurrence Matrices , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Larry S. Davis,et al.  Polarograms: A new tool for image texture analysis , 1979, Pattern Recognit..

[5]  Shu-Yuan Chen,et al.  Color texture segmentation using feature distributions , 2002, Pattern Recognit. Lett..

[6]  L. Macaire,et al.  Haralick feature extraction from LBP images for color texture classification , 2008, 2008 First Workshops on Image Processing Theory, Tools and Applications.

[7]  Erkki Oja,et al.  Texture discrimination with multidimensional distributions of signed gray-level differences , 2001, Pattern Recognit..

[8]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  David Zhang,et al.  Robust Object Tracking Using Joint Color-Texture Histogram , 2009, Int. J. Pattern Recognit. Artif. Intell..

[10]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Nuno Vasconcelos,et al.  On the plausibility of the discriminant center-surround hypothesis for visual saliency. , 2008, Journal of vision.

[12]  Matti Pietikäinen,et al.  Visual Characterization of Paper Using Isomap and Local Binary Patterns , 2005, MVA.

[13]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Matti Pietikäinen,et al.  Combining appearance and motion for face and gender recognition from videos , 2009, Pattern Recognit..

[15]  Matti Pietikäinen,et al.  Optimising Colour and Texture Features for Real-time Visual Inspection , 2002, Pattern Analysis & Applications.

[16]  Topi Mäenpää,et al.  The local binary pattern approach to texture analysis - extensions and applications , 2003 .