‘Oumuamua as a Messenger from the Local Association

With a hyperbolic trajectory around the Sun, `Oumuamua is the first confirmed interstellar object. However, its origin is poorly known. By simulating the orbits of 0.23 million local stars, we find 109 encounters with periastron less than 5 pc. `Oumuamua's low peculiar velocity is suggestive of its origin from a young stellar association with similar velocity. In particular, we find that `Oumuamua would have had slow encounters with at least five young stars belonging to the Local Association thus suggesting these as plausible sites for formation and ejection. In addition to an extremely elongated shape, the available observational data for `Oumuamua indicates a red colour suggestive of a potentially organic-rich and activity-free surface. These characteristics seem consistent with formation through energetic collisions between planets and debris objects in the middle part of a young stellar system. We estimate an abundance of at least 6.0$\times10^{-3}$ au$^{-3}$ for such interstellar objects with mean diameter larger than 100 m and find that it is likely that most of them will be ejected into the Galactic halo. Our Bayesian analysis of the available light curves indicates a rotation period of $6.96_{-0.39}^{+1.45}$ h which is consistent with the estimation by Meech et al. 2017 and shorter than other literature. The codes and results are available on this https URL

[1]  J. Bandfield,et al.  Origin of the anomalously rocky appearance of Tsiolkovskiy crater , 2016 .

[2]  Fabo Feng,et al.  Obliquity and precession as pacemakers of Pleistocene deglaciations , 2015, 1505.02183.

[3]  J. Bauer,et al.  The rotation period and shape of the hyperbolic asteroid A/2017 U1 from its lightcurve , 2017 .

[4]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[5]  Simon Portegies Zwart,et al.  The origin of interstellar asteroidal objects like 1I/2017 U1 , 2017, 1711.03558.

[6]  C. Bailer-Jones The evidence for and against astronomical impacts on climate change and mass extinctions: a review , 2009, International Journal of Astrobiology.

[7]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[8]  C. Bailer-Jones,et al.  Exploring the role of the Sun's motion in terrestrial comet impacts , 2014, 1406.1519.

[9]  Robert Jedicke,et al.  An age–colour relationship for main-belt S-complex asteroids , 2004, Nature.

[10]  H. Jones,et al.  Was Proxima captured by Alpha Centauri A and B , 2017, 1709.03560.

[11]  H. Rickman,et al.  Injection of Oort Cloud comets: the fundamental role of stellar perturbations , 2008, 0804.2560.

[12]  Larry Denneau,et al.  The Pan-STARRS wide-field optical/NIR imaging survey , 2010, Astronomical Telescopes + Instrumentation.

[13]  J. Masiero Palomar Optical Spectrum of Hyperbolic Near-Earth Object A/2017 U1 , 2017, 1710.09977.

[14]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[15]  R. Poleski,et al.  No large population of unbound or wide-orbit Jupiter-mass planets , 2017, Nature.

[16]  Ralf Kotulla,et al.  Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes , 2017, 1711.05687.

[17]  Fabo Feng,et al.  A Goldilocks principle for modelling radial velocity noise , 2016, 1606.05196.

[18]  O. Eggen Pre-Main-Sequence Stars in the Pleiades Supercluster , 1995 .

[19]  Jorge I. Zuluaga,et al.  A General Method for Assessing the Origin of Interstellar Small Bodies: The Case of 1I/2017 U1 (‘Oumuamua) , 2017, 1711.09397.

[20]  D. Montes,et al.  Late-type members of young stellar kinematic groups – I. Single stars , 2001, astro-ph/0106537.

[21]  Lori M. Feaga,et al.  On the Rotation Period and Shape of the Hyperbolic Asteroid 1I/‘Oumuamua (2017 U1) from Its Lightcurve , 2017, 1711.01402.

[22]  L. Hillenbrand,et al.  THE AGES OF EARLY-TYPE STARS: STRÖMGREN PHOTOMETRIC METHODS CALIBRATED, VALIDATED, TESTED, AND APPLIED TO HOSTS AND PROSPECTIVE HOSTS OF DIRECTLY IMAGED EXOPLANETS , 2015, 1501.03154.

[23]  Walter Dehnen,et al.  Local stellar kinematics from Hipparcos data , 1997 .

[24]  F. Royer,et al.  Rotational velocities of A-type stars - IV. Evolution of rotational velocities , 2012, 1201.2052.

[25]  George Gontcharov,et al.  Pulkovo Compilation of Radial Velocities for 35 495 Hipparcos stars in a common system , 2006, 1606.08053.

[26]  F. I. Pelupessy,et al.  Capture of exocomets and the erosion of the Oort cloud due to stellar encounters in the Galaxy , 2017, 1710.05866.

[27]  Qicheng Zhang,et al.  1I/2017 U1 (‘Oumuamua) is Hot: Imaging, Spectroscopy, and Search of Meteor Activity , 2017, 1711.02320.

[28]  P. A. Dybczy'nski,et al.  Investigating the dynamical history of the interstellar object 'Oumuamua , 2017, 1711.06618.

[29]  Konstantin Batygin,et al.  On the Consequences of the Detection of an Interstellar Asteroid , 2017, 1711.02260.

[30]  Andrew J. Connolly,et al.  APO Time-resolved Color Photometry of Highly Elongated Interstellar Object 1I/‘Oumuamua , 2017, 1711.04927.

[31]  Larry Denneau,et al.  A brief visit from a red and extremely elongated interstellar asteroid , 2017, Nature.

[32]  Anthony G. A. Brown The Gaia sky: version 1.0 , 2017, Proceedings of the International Astronomical Union.

[33]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[34]  Tabassum S. Tanvir,et al.  A catalogue of close encounter pairs , 2017, 1707.05277.

[35]  U. Munari,et al.  Local stellar kinematics from RAVE data - I. Local standard of rest , 2010, Monthly Notices of the Royal Astronomical Society.

[36]  Walter Alvarez,et al.  Evidence from crater ages for periodic impacts on the Earth , 1984, Nature.

[37]  J. Stoer,et al.  Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-Typus , 1964 .

[38]  Michael Marsset,et al.  Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua , 2017, 1711.06214.