Enhancing Upland cotton for drought resilience, productivity, and fiber quality: comparative evaluation and genetic dissection

[1]  J. Ferguson Climate change and abiotic stress mechanisms in plants. , 2019, Emerging topics in life sciences.

[2]  M. O’Connell,et al.  Progress and perspective on drought and salt stress tolerance in cotton , 2019, Industrial Crops and Products.

[3]  M. Ulloa,et al.  Assessment of Cotton Leaf and Yield Responses to Water-Deficit Stress During Flowering and Boll Development , 2019, Journal of Cotton Science.

[4]  Venugopal Mendu,et al.  Irrigation’s effect and applied selection on the fiber quality of Ethyl MethaneSulfonate (EMS) treated upland cotton (Gossypium hirsutum L.) , 2018, Journal of Cotton Research.

[5]  Jing-xia Zhang,et al.  Identification of Introgressed Alleles Conferring High Fiber Quality Derived From Gossypium barbadense L. in Secondary Mapping Populations of G. hirsutum L. , 2018, Front. Plant Sci..

[6]  Venugopal Mendu,et al.  Exploring ethyl methanesulfonate (EMS) treated cotton (Gossypium hirsutum L.) to improve drought tolerance , 2018, Euphytica.

[7]  F. Landerer,et al.  Emerging trends in global freshwater availability , 2018, Nature.

[8]  Ruiqiang Li,et al.  Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield , 2018, Nature Genetics.

[9]  Ying Sun,et al.  Genetic Map Construction and Fiber Quality QTL Mapping Using the CottonSNP80K Array in Upland Cotton , 2018, Front. Plant Sci..

[10]  Maojun Wang,et al.  A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation. , 2018, The New phytologist.

[11]  Yanpeng Zhao,et al.  QTLs Analysis and Validation for Fiber Quality Traits Using Maternal Backcross Population in Upland Cotton , 2017, Front. Plant Sci..

[12]  D. Stelly,et al.  Insights Into Upland Cotton (Gossypium hirsutum L.) Genetic Recombination Based on 3 High-Density Single-Nucleotide Polymorphism and a Consensus Map Developed Independently With Common Parents , 2017, Genomics insights.

[13]  Mingzhou Song,et al.  A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton , 2017, Molecular Genetics and Genomics.

[14]  Caiying Zhang,et al.  Genome‐wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. , 2017, Plant biotechnology journal.

[15]  H. Rashid,et al.  Construction of a High-Density Genetic Map and Its Application to QTL Identification for Fiber Strength in Upland Cotton , 2017 .

[16]  M. Ulloa,et al.  Stress Responses of Commercial Cotton Cultivars to Reduced Irrigation at Flowering and Maximization of Yields under Sub-Optimal Subsurface Drip Irrigation , 2017, Journal of Cotton Science.

[17]  P. Fryxell Taxonomy and Germplasm Resources , 2016 .

[18]  Zhongxu Lin,et al.  Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton , 2016, PloS one.

[19]  M. Ulloa,et al.  SNP Marker Discovery in Pima Cotton (Gossypium barbadense L.) Leaf Transcriptomes , 2016, Genomics insights.

[20]  Q. He,et al.  Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population , 2016, Front. Plant Sci..

[21]  Xiaocui Wang,et al.  Genetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their Backcross Populations in Upland Cotton , 2016, G3: Genes, Genomes, Genetics.

[22]  Yuzhen Shi,et al.  Identification of stable quantitative trait loci (QTLs) for fiber quality traits across multiple environments in Gossypium hirsutum recombinant inbred line population , 2016, BMC Genomics.

[23]  P. Li,et al.  Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes , 2016, Theoretical and Applied Genetics.

[24]  L. Zeng,et al.  Mapping by sequencing in cotton (Gossypium hirsutum) line MD52ne identified candidate genes for fiber strength and its related quality attributes , 2016, Theoretical and Applied Genetics.

[25]  Zhongxu Lin,et al.  QTL Mapping for Fiber and Yield Traits in Upland Cotton under Multiple Environments , 2015, PloS one.

[26]  Don C. Jones,et al.  Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp. , 2015, G3: Genes, Genomes, Genetics.

[27]  Lei Fang,et al.  Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement , 2015, Nature Biotechnology.

[28]  Mingzhou Song,et al.  Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations , 2015, Molecular Genetics and Genomics.

[29]  J. Bailey-Serres,et al.  Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability , 2015, Nature Reviews Genetics.

[30]  Zhongxu Lin,et al.  A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations , 2015, Molecular Genetics and Genomics.

[31]  John Z. Yu,et al.  Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. × G. barbadense L.) RIL population , 2014, Molecular Genetics and Genomics.

[32]  M. Ulloa The Diploid D Genome Cottons (Gossypium spp.) of the New World , 2014 .

[33]  Yabing Li,et al.  Optimizing Irrigation and Plant Density for Improved Cotton Yield and Fiber Quality , 2014 .

[34]  J. Jenkins,et al.  Quantitative trait loci analysis of fiber quality traits using a random-mated recombinant inbred population in Upland cotton (Gossypium hirsutum L.) , 2014, BMC Genomics.

[35]  J. Wendel,et al.  Molecular confirmation of species status for the allopolyploid cotton species, Gossypium ekmanianum Wittmack , 2014, Genetic Resources and Crop Evolution.

[36]  Zhongxu Lin,et al.  A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton , 2013, BMC Genomics.

[37]  N. Rajan,et al.  Multiple Irrigation Levels Affect Boll Distribution, Yield, and Fiber Micronaire in Cotton , 2013 .

[38]  S. Palle,et al.  RNAi-mediated Ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. , 2013, Plant biotechnology journal.

[39]  UlloaMauricio,et al.  Genetic diversity and population structure of cotton (Gossypium spp.) of the New World assessed by SSR markers , 2013 .

[40]  Adi Doron-Faigenboim,et al.  Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology Repeated Polyploidization of Gossypium Genomes and the Evolution of Spinnable Cotton Fibres , 2022 .

[41]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[42]  John Z. Yu,et al.  A High-Density Simple Sequence Repeat and Single Nucleotide Polymorphism Genetic Map of the Tetraploid Cotton Genome , 2012, G3: Genes | Genomes | Genetics.

[43]  Seth C. Murray,et al.  Plant breeding for harmony between agriculture and the environment , 2011 .

[44]  J. Burke Chapter 2 COTTON FLOWERS : POLLEN AND PETAL HUMIDITY SENSITIVITIES DETERMINE REPRODUCTIVE COMPETITIVENESS IN DIVERSE ENVIRONMENTS , 2011 .

[45]  A. Hoekstra,et al.  The green, blue and grey water footprint of crops and derived crops products , 2011 .

[46]  Zhongxu Lin,et al.  Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense , 2011, BMC Genomics.

[47]  M. Giband,et al.  Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population , 2010, BMC Plant Biology.

[48]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[49]  Glen L. Ritchie,et al.  Subsurface Drip and Overhead Irrigation: A Comparison of Plant Boll Distribution in Upland Cotton , 2009 .

[50]  Stephen J O'Brien,et al.  Every genome sequence needs a good map. , 2009, Genome research.

[51]  J. Lacape,et al.  A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton , 2009, Theoretical and Applied Genetics.

[52]  P. Bauer,et al.  A Comparison of Two Cotton Cultivars Differing in Maturity for Within-Canopy Fiber Property Variation , 2009 .

[53]  J. Stewart,et al.  Evolution and natural history of the cotton genus. , 2009 .

[54]  Xavier Draye,et al.  Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributions of Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development , 2007, Genetics.

[55]  Tianzhen Zhang,et al.  A Microsatellite-Based, Gene-Rich Linkage Map Reveals Genome Structure, Function and Evolution in Gossypium , 2007, Genetics.

[56]  J. Burke Evaluation of Source Leaf Responses to Water-Deficit Stresses in Cotton Using a Novel Stress Bioassay1[OA] , 2006, Plant Physiology.

[57]  J. Ooijen,et al.  JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations , 2006 .

[58]  D. Stelly,et al.  Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) Joinmap. , 2005, The Journal of heredity.

[59]  W. Pettigrew,et al.  Moisture deficit effects on cotton lint yield, yield components, and boll distribution , 2004 .

[60]  D. Knauft Cotton: Origin, History, Technology, and Production , 2003 .

[61]  J. Wendel,et al.  Polyploidy and the Evolutionary History of Cotton , 2003 .

[62]  A. Paterson,et al.  QTL analysis of genotype × environment interactions affecting cotton fiber quality , 2003, Theoretical and Applied Genetics.

[63]  R. Voorrips MapChart: software for the graphical presentation of linkage maps and QTLs. , 2002, The Journal of heredity.

[64]  Rosalind J Wright,et al.  Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. , 2001, Genome research.

[65]  S. Senseman,et al.  Drought-induced Changes in Shoot and Root Growth of Young Cotton Plants , 1999 .

[66]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[67]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[68]  Cedric A. B. Smith,et al.  Introduction to Quantitative Genetics , 1960 .

[69]  J. Beasley Meiotic Chromosome Behavior in Species, Species Hybrids, Haploids, and Induced Polyploids of Gossypium. , 1942, Genetics.