A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS

We consider the approximate solution with adaptive finite elements of a class of linear boundary value problems, which includes problems of "saddle point" type. For the adaptive algorithm we assume the following framework: refinement relies on unique quasi-regular element subdivisions and generates locally quasi-uniform grids, the finite element spaces are conforming, nested, and satisfy the inf–sup conditions, the error estimator is reliable as well as locally and discretely efficient, and marked elements are subdivided at least once. Under these assumptions, we give a sufficient and essentially necessary condition on marking for the convergence of the finite element solutions to the exact one. This condition is not only satisfied by Dorfler's strategy, but also by the maximum strategy and the equidistribution strategy.

[1]  Andreas Veeser,et al.  LOCALLY EFFICIENT AND RELIABLE A POSTERIORI ERROR ESTIMATORS FOR DIRICHLET PROBLEMS , 2006 .

[2]  Ricardo H. Nochetto,et al.  An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..

[3]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[4]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[5]  I. Babuska Error-bounds for finite element method , 1971 .

[6]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[7]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[8]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[9]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[10]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[11]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[12]  Kunibert G. Siebert,et al.  A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements , 2007, SIAM J. Optim..

[13]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[14]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[15]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[16]  Andreas Veeser,et al.  Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.

[17]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[18]  Ricardo H. Nochetto,et al.  DESIGN AND CONVERGENCE OF AFEM IN H(DIV) , 2007 .

[19]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[20]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[21]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[22]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[23]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..