Overview of Terrain Relative Navigation Approaches for Precise Lunar Landing

The driving precision landing requirement for the Autonomous Landing and Hazard Avoidance Technology project is to autonomously land within 100 m of a predetermined location on the lunar surface. Traditional lunar landing approaches based on inertial sensing do not have the navigational precision to meet this requirement. The purpose of Terrain Relative Navigation (TRN) is to augment inertial navigation by providing position or bearing measurements relative to known surface landmarks. From these measurements, the navigational precision can be reduced to a level that meets the 100 m requirement. There are three different TRN functions: global position estimation, local position estimation and velocity estimation. These functions can be achieved with active range sensing or passive imaging. This paper gives a survey of many TRN approaches and then presents some high fidelity simulation results for contour matching and area correlation approaches to TRN using active sensors. Since TRN requires an a-priori reference map, the paper concludes by describing past and future lunar imaging and digital elevation map data sets available for this purpose.

[1]  Andrew E. Johnson,et al.  Motion estimation from laser ranging for autonomous comet landing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Yang Cheng,et al.  Landmark Based Position Estimation for Pinpoint Landing on Mars , 2005 .

[3]  Rie Honda,et al.  Learning to Detect Small Impact Craters , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[4]  Jean de Lafontaine,et al.  Pseudo-Doppler Velocity Navigation for Lidar-Based Planetary Exploration , 2006 .

[5]  R. W. Gaskell Automated landmark identification for spacecraft navigation , 2001 .

[6]  Martial Hebert,et al.  Efficient multiple model recognition in cluttered 3-D scenes , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[7]  Stergios I. Roumeliotis,et al.  A General Approach to Terrain Relative Navigation for Planetary Landing , 2007 .

[8]  G. Von Tiesenhausen,et al.  Lunar surface models. , 1967 .

[9]  Stergios I. Roumeliotis,et al.  The JPL Autonomous Helicopter Testbed : A Platform for Planetary Exploration Technology Research and Development , 2006 .

[10]  James S. Sobek,et al.  Digital Scene Matching Area Correlator (DSMAC) , 1980, Optics & Photonics.

[11]  Jake K. Aggarwal,et al.  Estimation of motion from a pair of range images: A review , 1991, CVGIP Image Underst..

[12]  Pietro Perona,et al.  Visual navigation using a single camera , 1995, Proceedings of IEEE International Conference on Computer Vision.

[13]  Stergios I. Roumeliotis,et al.  The Jet Propulsion Laboratory Autonomous Helicopter Testbed: A platform for planetary exploration technology research and development , 2006, J. Field Robotics.

[14]  David E. Smith,et al.  Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission , 2007 .

[15]  Andrew E. Johnson,et al.  Lidar-Based Hazard Avoidance for Safe Landing on Mars , 2002 .

[16]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[17]  Larry H. Matthies,et al.  Design Through Operation of an Image-Based Velocity Estimation System for Mars Landing , 2007, International Journal of Computer Vision.

[18]  R. W. Gaskell,et al.  Determination of landmark topography from imaging data , 2002 .

[20]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[21]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Yaser Sheikh,et al.  Geodetic Alignment of Aerial Video Frames , 2003 .

[23]  Joe P. Golden,et al.  Terrain Contour Matching (TERCOM): A Cruise Missile Guidance Aid , 1980, Optics & Photonics.

[24]  Clark F. Olson,et al.  Optical landmark detection for spacecraft navigation , 2003 .