Incremental list coloring of graphs, parameterized by conservation

Incrementally k-list coloring a graph means that a graph is given by adding stepwise one vertex after another, and for each intermediate step we ask for a vertex coloring such that each vertex has one of the colors specified by its associated list containing some of in total k colors We introduce the “conservative version” of this problem by adding a further parameter c∈ℕ specifying the maximum number of vertices to be recolored between two subsequent graphs (differing by one vertex) This “conservation parameter” c models the natural quest for a modest evolution of the coloring in the course of the incremental process instead of performing radical changes We show that the problem is NP-hard for k≥3 and W[1]-hard when parameterized by c In contrast, the problem becomes fixed-parameter tractable with respect to the combined parameter (k,c) We prove that the problem has an exponential-size kernel with respect to (k,c) and there is no polynomial-size kernel unless NP⊆coNP/poly Finally, we provide empirical findings for the practical relevance of our approach in terms of an effective graph coloring heuristic.

[1]  Juraj Hromkovic,et al.  On the Hardness of Reoptimization , 2008, SOFSEM.

[2]  Rajeev Motwani,et al.  Incremental clustering and dynamic information retrieval , 1997, STOC '97.

[3]  Klaus Jansen,et al.  Scheduling with Incompatible Jobs , 1992, Discret. Appl. Math..

[4]  J. K. Il Precoloring Extension with Fixed Color Bound , 1994 .

[5]  Feng Luo,et al.  Exploring the k-colorable landscape with Iterated Greedy , 1993, Cliques, Coloring, and Satisfiability.

[6]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[7]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[8]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[9]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[10]  Rolf Niedermeier,et al.  Reflections on Multivariate Algorithmics and Problem Parameterization , 2010, STACS.

[11]  Dorothea Wagner,et al.  Modularity-Driven Clustering of Dynamic Graphs , 2010, SEA.

[12]  F. Roberts On the compatibility between a graph and a simple order , 1971 .

[13]  W. Marsden I and J , 2012 .

[14]  Rolf Niedermeier,et al.  The Parameterized Complexity of Local Search for TSP, More Refined , 2011, Algorithmica.

[15]  Javier Marenco,et al.  Exploring the complexity boundary between coloring and list-coloring , 2006, Electron. Notes Discret. Math..

[16]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[17]  Dániel Marx,et al.  Parameterized coloring problems on chordal graphs , 2004, Theor. Comput. Sci..

[18]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[19]  Ian Davidson,et al.  Constrained Clustering: Advances in Algorithms, Theory, and Applications , 2008 .

[20]  H. Bodlaender,et al.  Analysis of Data Reduction: Transformations give evidence for non-existence of polynomial kernels , 2008 .

[21]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[22]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[23]  Martin Grohe,et al.  Parameterized Complexity and Subexponential Time , 2004 .

[24]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, WG.

[25]  Michael R. Fellows,et al.  Local Search: Is Brute-Force Avoidable? , 2009, IJCAI.

[26]  Hans L. Bodlaender,et al.  Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.

[27]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[28]  Dániel Marx,et al.  Searching the k-change neighborhood for TSP is W[1]-hard , 2008, Oper. Res. Lett..

[29]  Dániel Marx,et al.  Precoloring extension on unit interval graphs , 2006, Discret. Appl. Math..

[30]  Michael R. Fellows,et al.  On the Complexity of Some Colorful Problems Parameterized by Treewidth , 2007, COCOA.

[31]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[32]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[33]  Michael R. Fellows,et al.  Towards Fully Multivariate Algorithmics: Some New Results and Directions in Parameter Ecology , 2009, IWOCA.

[34]  Hadas Shachnai,et al.  Minimal Cost Reconfiguration of Data Placement in Storage Area Network , 2009, WAOA.

[35]  Liming Cai,et al.  Advice Classes of Parameterized Tractability , 1997, Ann. Pure Appl. Log..

[36]  Zsolt Tuza,et al.  Precoloring Extension III: Classes of Perfect Graphs , 1996, Combinatorics, Probability and Computing.

[37]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[38]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[39]  Jirí Fiala,et al.  Parameterized complexity of coloring problems: Treewidth versus vertex cover , 2009, Theor. Comput. Sci..