On the Triple Junction Problem without Symmetry Hypotheses

We investigate the Allen-Cahn system \begin{equation*} \Delta u-W_u(u)=0,\quad u:\mathbb{R}^2\rightarrow\mathbb{R}^2, \end{equation*} where $W\in C^2(\mathbb{R}^2,[0,+\infty))$ is a potential with three global minima. We establish the existence of an entire solution $u$ which possesses a triple junction structure. The main strategy is to study the global minimizer $u_\varepsilon$ of the variational problem \begin{equation*} \min\int_{B_1} \left( \frac{\varepsilon}{2}|\nabla u|^2+\frac{1}{\varepsilon}W(u) \right)\,dz,\ \ u=g_\varepsilon \text{ on }\partial B_1. \end{equation*} The point of departure is an energy lower bound that plays a crucial role in estimating the location and size of the diffuse interface. We do not impose any symmetry hypothesis on the solution.

[1]  Dimitrios Gazoulis On the $ \Gamma $-convergence of the Allen-Cahn functional with boundary conditions , 2023, 2301.07458.

[2]  Giorgio Fusco,et al.  Sharp lower bounds for vector Allen-Cahn energy and qualitative properties of minimizes under no symmetry hypotheses , 2021, 2110.00388.

[3]  Giorgio Fusco,et al.  Minimizing under relaxed symmetry constraints: Triple and N-junctions , 2021, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[4]  N. Alikakos,et al.  Elliptic Systems of Phase Transition Type , 2019 .

[5]  F. Santambrogio,et al.  Metric methods for heteroclinic connections in infinite dimensional spaces , 2017, Indiana University Mathematics Journal.

[6]  Juncheng Wei,et al.  Global minimizers of the Allen-Cahn equation in dimension $n\geq 8$ , 2016, 1606.05315.

[7]  Marco A. M. Guaraco Min-max for phase transitions and the existence of embedded minimal hypersurfaces , 2015, 1505.06698.

[8]  N. Alikakos,et al.  Density estimates for vector minimizers and applications , 2014, 1403.7608.

[9]  Kelei Wang A new proof of Savin's theorem on Allen-Cahn equations , 2014, 1401.6480.

[10]  N. Alikakos,et al.  A maximum principle for systems with variational structure and an application to standing waves , 2013, 1311.1022.

[11]  N. Alikakos On the structure of phase transition maps for three or more coexisting phases , 2013, 1302.7261.

[12]  Manuel del Pino,et al.  On De Giorgi's conjecture in dimension N>9 , 2011 .

[13]  Juncheng Wei,et al.  Stable solutions of the Allen–Cahn equation in dimension 8 and minimal cones , 2011, 1102.3446.

[14]  E. Valdinoci,et al.  1D symmetry for solutions of semilinear and quasilinear elliptic equations , 2011 .

[15]  N. Alikakos Some basic facts on the system ∆u - W_u (u) = 0 , 2009 .

[16]  Juncheng Wei,et al.  Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces. , 2009, 0902.2047.

[17]  Luigi Ambrosio,et al.  Entire solutions of semilinear elliptic equations in R^3 and a conjecture of De Giorgi , 2000 .

[18]  M. Schatzman,et al.  A three‐layered minimizer in R2 for a variational problem with a symmetric three‐well potential , 1996 .

[19]  S. Baldo Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids , 1990 .

[20]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[21]  J. Taylor,et al.  The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces , 1976 .

[22]  E. P.D. CONNECTING ORBITS IN HILBERT SPACES AND APPLICATIONS TO P.D.E. , 2020 .

[23]  O. Chodosh,et al.  LECTURE NOTES ON GEOMETRIC FEATURES OF THE ALLEN–CAHN EQUATION (PRINCETON, 2019) , 2019 .

[24]  G. Fusco LAYERED SOLUTIONS TO THE VECTOR ALLEN-CAHN EQUATION IN R 2 . MINIMIZERS AND HETEROCLINIC CONNECTIONS , 2017 .

[25]  Juncheng Wei Geometrization Program of Semilinear Elliptic Equations , 2012 .

[26]  F. Pacard The role of minimal surfaces in the study of the Allen-Cahn equation. , 2012 .

[27]  O. Savin Regularity of flat level sets in phase transitions , 2009 .

[28]  M. Schatzman,et al.  Symmetric quadruple phase transitions , 2008 .

[29]  M. Schatzman Asymmetric heteroclinic double layers , 2002 .

[30]  P. Padilla,et al.  Higher Energy Solutions in the Theory of Phase Transitions: A Variational Approach , 2001 .

[31]  Nassif Ghoussoub,et al.  On a conjecture of De Giorgi and some related problems , 1998 .

[32]  Peter Sternberg,et al.  Local minimisers of a three-phase partition problem with triple junctions , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[33]  L. Tartar,et al.  The gradient theory of phase transitions for systems with two potential wells , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[34]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[35]  W. Fleming Flat chains over a finite coefficient group , 1966 .