On the sum-of-squares degree of symmetric quadratic functions

We study how well functions over the boolean hypercube of the form $f_k(x)=(|x|-k)(|x|-k-1)$ can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in $\ell_{\infty}$-norm as well as in $\ell_1$-norm. We describe three complexity-theoretic applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and Steurer on the positive semidefinite extension complexity of the correlation and TSP polytopes cannot be improved further by showing better sum-of-squares degree lower bounds on $\ell_1$-approximation of $f_k$; (2) a proof that Grigoriev's lower bound on the degree of Positivstellensatz refutations for the knapsack problem is optimal, answering an open question from his work; (3) bounds on the query complexity of quantum algorithms whose expected output approximates such functions.

[1]  Ronald de Wolf,et al.  Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[2]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[3]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[4]  Ronald de Wolf,et al.  A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions , 2008, Quantum Inf. Comput..

[5]  Yaoyun Shi,et al.  Quantum communication complexity of block-composed functions , 2007, Quantum Inf. Comput..

[6]  Dima Grigoriev,et al.  Complexity of Null-and Positivstellensatz proofs , 2001, Ann. Pure Appl. Log..

[7]  T. J. Rivlin An Introduction to the Approximation of Functions , 2003 .

[8]  Grigoriy Blekherman,et al.  Sums of squares on the hypercube , 2014, 1402.4199.

[9]  Alexander A. Sherstov The Pattern Matrix Method , 2009, SIAM J. Comput..

[10]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[11]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[12]  Hans Raj Tiwary,et al.  Exponential Lower Bounds for Polytopes in Combinatorial Optimization , 2011, J. ACM.

[13]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[14]  Elchanan Mossel,et al.  Harmonicity and Invariance on Slices of the Boolean Cube , 2016, Computational Complexity Conference.

[15]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[16]  EDWARD A. HIRSCH,et al.  COMPLEXITY OF SEMIALGEBRAIC PROOFS , 2003 .

[17]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[18]  W. Haemers,et al.  Association schemes , 1996 .

[19]  Ronald de Wolf,et al.  On Quantum Versions of the Yao Principle , 2001, STACS.

[20]  Dmitrii V. Pasechnik,et al.  Complexity of semialgebraic proofs , 2002 .

[21]  F. Scarabotti,et al.  Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains , 2008 .

[22]  Ryan O'Donnell,et al.  New degree bounds for polynomial threshold functions , 2003, STOC '03.

[23]  Dima Grigoriev,et al.  Complexity of Positivstellensatz proofs for the knapsack , 2002, computational complexity.

[24]  Adam Kurpisz,et al.  Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations , 2016, IPCO.

[25]  G. Stengle A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .

[26]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[27]  Ryan O'Donnell,et al.  New degree bounds for polynomial threshold functions , 2010, Comb..

[28]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[29]  Ramamohan Paturi,et al.  On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.

[30]  N. Z. Shor An approach to obtaining global extremums in polynomial mathematical programming problems , 1987 .

[31]  A A S Approximate Inclusion-Exclusion for Arbitrary Symmetric Functions , 2007 .

[32]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[33]  Troy Lee,et al.  Optimal Quantum Adversary Lower Bounds for Ordered Search , 2008, ICALP.

[34]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[35]  Saulo Alves de Araujo,et al.  Identification of novel keloid biomarkers through Profiling of Tissue Biopsies versus Cell Cultures in Keloid Margin specimens Compared to adjacent Normal Skin , 2010, Eplasty.

[36]  Grigoriy Blekherman,et al.  Symmetric Non-Negative Forms and Sums of Squares , 2012, Discret. Comput. Geom..

[37]  Ronald de Wolf,et al.  A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions , 2008, Quantum Inf. Comput..

[38]  Ronald de Wolf,et al.  Query Complexity in Expectation , 2014, ICALP.

[39]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.