On the sum-of-squares degree of symmetric quadratic functions
暂无分享,去创建一个
Ronald de Wolf | Troy Lee | Anupam Prakash | Henry Yuen | R. D. Wolf | A. Prakash | Troy Lee | H. Yuen
[1] Ronald de Wolf,et al. Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[2] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[3] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[4] Ronald de Wolf,et al. A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions , 2008, Quantum Inf. Comput..
[5] Yaoyun Shi,et al. Quantum communication complexity of block-composed functions , 2007, Quantum Inf. Comput..
[6] Dima Grigoriev,et al. Complexity of Null-and Positivstellensatz proofs , 2001, Ann. Pure Appl. Log..
[7] T. J. Rivlin. An Introduction to the Approximation of Functions , 2003 .
[8] Grigoriy Blekherman,et al. Sums of squares on the hypercube , 2014, 1402.4199.
[9] Alexander A. Sherstov. The Pattern Matrix Method , 2009, SIAM J. Comput..
[10] David P. DiVincenzo,et al. Quantum information and computation , 2000, Nature.
[11] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[12] Hans Raj Tiwary,et al. Exponential Lower Bounds for Polytopes in Combinatorial Optimization , 2011, J. ACM.
[13] Ronald de Wolf,et al. Quantum lower bounds by polynomials , 2001, JACM.
[14] Elchanan Mossel,et al. Harmonicity and Invariance on Slices of the Boolean Cube , 2016, Computational Complexity Conference.
[15] Noam Nisan,et al. On the degree of boolean functions as real polynomials , 1992, STOC '92.
[16] EDWARD A. HIRSCH,et al. COMPLEXITY OF SEMIALGEBRAIC PROOFS , 2003 .
[17] Johan Efberg,et al. YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .
[18] W. Haemers,et al. Association schemes , 1996 .
[19] Ronald de Wolf,et al. On Quantum Versions of the Yao Principle , 2001, STACS.
[20] Dmitrii V. Pasechnik,et al. Complexity of semialgebraic proofs , 2002 .
[21] F. Scarabotti,et al. Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains , 2008 .
[22] Ryan O'Donnell,et al. New degree bounds for polynomial threshold functions , 2003, STOC '03.
[23] Dima Grigoriev,et al. Complexity of Positivstellensatz proofs for the knapsack , 2002, computational complexity.
[24] Adam Kurpisz,et al. Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations , 2016, IPCO.
[25] G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .
[26] Prasad Raghavendra,et al. Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.
[27] Ryan O'Donnell,et al. New degree bounds for polynomial threshold functions , 2010, Comb..
[28] G. Brassard,et al. Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.
[29] Ramamohan Paturi,et al. On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.
[30] N. Z. Shor. An approach to obtaining global extremums in polynomial mathematical programming problems , 1987 .
[31] A A S. Approximate Inclusion-Exclusion for Arbitrary Symmetric Functions , 2007 .
[32] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[33] Troy Lee,et al. Optimal Quantum Adversary Lower Bounds for Ordered Search , 2008, ICALP.
[34] Dan Suciu,et al. Journal of the ACM , 2006 .
[35] Saulo Alves de Araujo,et al. Identification of novel keloid biomarkers through Profiling of Tissue Biopsies versus Cell Cultures in Keloid Margin specimens Compared to adjacent Normal Skin , 2010, Eplasty.
[36] Grigoriy Blekherman,et al. Symmetric Non-Negative Forms and Sums of Squares , 2012, Discret. Comput. Geom..
[37] Ronald de Wolf,et al. A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions , 2008, Quantum Inf. Comput..
[38] Ronald de Wolf,et al. Query Complexity in Expectation , 2014, ICALP.
[39] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.