MAHI: An Airborne Mid-Infrared Imaging Spectrometer for Industrial Emissions Monitoring

An airborne hyperspectral imager operating in the midwave-infrared spectral range is described. The Mid-infrared Airborne Hyperspectral Imager (MAHI) features 3.3-nm spectral sampling over its 3.3–<inline-formula> <tex-math notation="LaTeX">$5.4~\mu \text{m}$ </tex-math></inline-formula> wavelength range. MAHI operates in a roll-stabilized pushbroom configuration with 480 cross-track pixels, each with an instantaneous field-of-view (IFOV) of 0.94 mrad, to provide for a total FOV of 25.8°. The sensor spectroradiometric performance is illustrated by case studies featuring the detection, identification, and quantification of a number of fugitive gaseous emissions from industrial sources.

[1]  Stephen J. Young,et al.  Tracking and quantification of gaseous chemical plumes from anthropogenic emission sources within the Los Angeles Basin , 2017 .

[2]  D. Thompson,et al.  Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region , 2016, Proceedings of the National Academy of Sciences.

[3]  Simon J. Hook,et al.  Characterization of anthropogenic methane plumes with the HyperspectralThermal Emission Spectrometer (HyTES): a retrieval method and error analysis , 2016 .

[4]  David R. Thompson,et al.  Space‐based remote imaging spectroscopy of the Aliso Canyon CH4 superemitter , 2016 .

[5]  Simon J. Hook,et al.  High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES) , 2016 .

[6]  H. Worden,et al.  Information content of MOPITT CO profile retrievals: Temporal and geographical variability , 2015 .

[7]  Merritt N. Deeter,et al.  An examination of the long-term CO records from MOPITT and IASI: Comparison of retrieval methodology , 2015 .

[8]  Alain P. Kattnig,et al.  SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures. , 2015, Optics express.

[9]  David W. Warren,et al.  MAGI: A New High-Performance Airborne Thermal-Infrared Imaging Spectrometer for Earth Science Applications , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Ayana R. Anderson,et al.  Top five industries resulting in injuries from acute chemical incidents—Hazardous Substance Emergency Events Surveillance, nine states, 1999-2008. , 2015, MMWR supplements.

[11]  A. Thorpe Mapping methane concentrations from a controlled release experiment using the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) , 2014 .

[12]  Ira Leifer,et al.  Airborne visualization and quantification of discrete methane sources in the environment , 2014 .

[13]  Ilse Aben,et al.  Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: Performance comparison of proxy and physics retrieval algorithms , 2012 .

[14]  Susan S. Kulawik,et al.  Profiles of CH 4 , HDO, H 2 O, and N 2 O with improved lower tropospheric vertical resolution from Aura TES radiances , 2011 .

[15]  J. Pierce,et al.  Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology , 2011 .

[16]  Ira Leifer,et al.  Detection of marine methane emissions with AVIRIS band ratios , 2011 .

[17]  L. Larrabee Strow,et al.  Improved agreement of AIRS tropospheric carbon monoxide products with other EOS sensors using optimal estimation retrievals , 2010 .

[18]  A. Ravishankara,et al.  Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century , 2009, Science.

[19]  Vincent-Henri Peuch,et al.  Equatorial total column of nitrous oxide as measured by IASI on MetOp-A: implications for transport processes , 2009 .

[20]  Christopher D. Barnet,et al.  Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS) , 2008 .

[21]  Merritt N. Deeter,et al.  Vertical resolution and information content of CO profiles retrieved by MOPITT , 2004 .

[22]  Timothy J. Johnson,et al.  The PNNL quantitative infrared database for gas-phase sensing: a spectral library for environmental, hazmat, and public safety standoff detection , 2004, SPIE Optics East.

[23]  S. J. Young,et al.  An in‐scene method for atmospheric compensation of thermal hyperspectral data , 2002 .

[24]  J. Horel,et al.  MESOWEST: COOPERATIVE MESONETS IN THE WESTERN UNITED STATES , 2002 .

[25]  Terrence S. Lomheim,et al.  Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise-based performance , 2002, SPIE Optics + Photonics.

[26]  Craig R. Schwartz,et al.  Comparison of infrared imaging hyperspectral sensors for military target detection applications , 1996, Optics & Photonics.

[27]  D. Cobb,et al.  Application of selective catalytic reduction (SCR) technology for NOx reduction from refinery combustion sources , 1991 .

[28]  W. Press,et al.  Numerical Recipes: FORTRAN , 1990 .

[29]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .

[30]  F. H. Fanaki,et al.  Experimental observations of a bifurcated buoyant plume , 1975 .

[31]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .