Scanning force microscopy - Calibrative procedures for 'best practice'

Scanning force microscopy (SFM) is gaining rapidly in popularity as a convenient and versatile tool for characterising and manipulating a great variety of physical and biological systems. In spite of being in the early stages of the learning curve, the SFM family has already made significant contributions to the rapidly expanding body of knowledge about surface structures and properties. However, many of the results emerging from SFM studies are the outcomes of incompletely characterised methodologies, and the reports often do not provide adequate information about instrumental and operational conditions. A typical SFM system consists of the following main elements: a sample stage with x-y-z positional control; a detector/sensor stage containing the optical deflection arrangement and the position-sensitive sensor assembly; and the force-sensing probe which consists of a lever and a tip. The elements will perform according to operational criteria, and their functionalities will be contingent on evaluation of sets of parameters, without which the interpretation of results may be open to questioning and/or be difficult to reproduce. Methodologies for evaluation and calibration of the various elements are now in the process of being developed; these will in due course constitute the basis on which prescriptions will be constructed for “best practice.” The current state of the literature is reviewed, and strengths and weaknesses are identified.

[1]  Henny W. Zandbergen,et al.  Evaluation of the probing profile of scanning force microscopy tips , 1994 .

[2]  Ernst Meyer,et al.  Site-specific friction force spectroscopy , 1996 .

[3]  Giovanni Dietler,et al.  Mapping the local Young's modulus by analysis of the elastic deformations occurring in atomic force microscopy , 1995 .

[4]  Dror Sarid,et al.  Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever , 1994 .

[5]  J. Neumeister,et al.  Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers , 1994 .

[6]  S W Carmichael,et al.  The adrenal chromaffin cell. , 1985, Scientific American.

[7]  M. Binggeli,et al.  Influence of water vapor on nanotribology studied by friction force microscopy , 1995 .

[8]  R Balhorn,et al.  Tip-radius-induced artifacts in AFM images of protamine-complexed DNA fibers. , 1992, Ultramicroscopy.

[9]  Alfons Baiker,et al.  Direct imaging of the tip shape by AFM , 1995 .

[10]  Chris Van Haesendonck,et al.  Can atomic force microscopy tips be inspected by atomic force microscopy , 1991 .

[11]  Pascal Gallo,et al.  Materials" properties measurements: Choosing the optimal scanning probe microscope configuration , 1996 .

[12]  Phaedon Avouris,et al.  Atom-resolved surface chemistry using the scanning tunneling microscope , 1990 .

[13]  H. Kumar Wickramasinghe,et al.  Scanning probe microscopy: Current status and future trends , 1990 .

[14]  Sandor Kasas,et al.  Deformation and height anomaly of soft surfaces studied with an AFM , 1993 .

[15]  Udo D. Schwarz,et al.  Quantitative analysis of lateral force microscopy experiments , 1996 .

[16]  Hubert M. Pollock,et al.  Interpretation of force curves in force microscopy , 1993 .

[17]  Lars Montelius,et al.  Direct observation of the tip shape in scanning probe microscopy , 1993 .

[18]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[19]  Kathryn J. Wahl,et al.  Design and calibration of a scanning force microscope for friction, adhesion, and contact potential studies , 1995 .

[20]  P. Markiewicz,et al.  Atomic force microscopy probe tip visualization and improvement of images using a simple deconvolution procedure , 1994 .

[21]  E. Bamberg,et al.  Scan speed limit in atomic force microscopy , 1993 .

[22]  R. Wurster,et al.  Investigation of nanoparticles by atomic and lateral force microscopy , 1993 .

[23]  J. Hoh,et al.  Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy , 1996 .

[24]  Douglas J. Thomson,et al.  Atomic force microscope tip radius needed for accurate imaging of thin film surfaces , 1994 .

[25]  R. Colton,et al.  Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope , 1989 .

[26]  J. Vesenka,et al.  Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. , 1993, Biophysical journal.

[27]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[28]  Marco Salerno,et al.  NORMAL AND LATERAL FORCES IN SCANNING FORCE MICROSCOPY , 1994 .

[29]  David Keller,et al.  Imaging steep, high structures by scanning force microscopy with electron beam deposited tips , 1992 .

[30]  Sverre Myhra,et al.  Determination of the spring constants of probes for force microscopy/spectroscopy , 1996 .

[31]  Robert J. Warmack,et al.  Scanning tunnelling microscopy of tobacco mosaic virus on evaporated and sputter‐coated palladium/gold substrates , 1990 .

[32]  Kevin M. Shakesheff,et al.  Blind reconstruction of scanning probe image data , 1996 .

[33]  C. V. Nicholas,et al.  The use of a polymer film to estimate AFM probe profile , 1994 .

[34]  G. Watson,et al.  Polystyrene spheres on mica substrates: AFM calibration, tip parameters and scan artefacts , 1996 .

[35]  S Lees,et al.  Measuring the microelastic properties of biological material. , 1992, Biophysical journal.

[36]  Sverre Myhra,et al.  Imaging and nano‐dissection of tobacco mosaic virus by atomic force microscopy , 1995 .

[37]  C. Bustamante,et al.  Circular DNA molecules imaged in air by scanning force microscopy. , 1992, Biochemistry.

[38]  C. Odin,et al.  Tip's finite size effects on atomic force microscopy in the contact mode: simple geometrical considerations for rapid estimation of apex radius and tip angle based on the study of polystyrene latex balls , 1994 .

[39]  John Bechhoefer,et al.  Measurement and manipulation of van der Waals forces in atomic‐force microscopy , 1994 .

[40]  P. E. Russell,et al.  Method for evaluating sharpness of tip apex of a cantilever for the atomic force microscope , 1995 .

[41]  Joseph Fu In situ testing and calibrating of z‐piezo of an atomic force microscope , 1995 .

[42]  Norbert Kruse,et al.  Influence of humidity on friction measurements of supported MoS2 single layers , 1996 .

[43]  S. Lindsay,et al.  Polystyrene latex particles as a size calibration for the atomic force microscope , 1991 .

[44]  D. F. Evans,et al.  Lateral Force Microscopy Study on the Shear Properties of Self-Assembled Monolayers of Dialkylammonium Surfactant on Mica , 1994 .

[45]  M. J. Vasile,et al.  Characterization of scanning probe microscope tips for linewidth measurement , 1991 .

[46]  Gerd K. Binnig,et al.  Scanning Tunneling Microscope , 2020, Definitions.

[47]  Roland G. Winkler,et al.  Forces affecting the substrate in resonant tapping force microscopy , 1995 .

[48]  David C. Joy,et al.  Calibration of atomic force microscope tips using biomolecules , 1992 .

[49]  Peter Grutter,et al.  Tip artifacts of microfabricated force sensors for atomic force microscopy , 1992 .

[50]  Russell D. Young,et al.  The Topografiner: An Instrument for Measuring Surface Microtopography , 1972 .

[51]  Eugene A. Irene,et al.  Imaging and modification of Au(111) monatomic steps with atomic force microscopy , 1993 .

[52]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[53]  G. Binnig,et al.  SCANNING TUNNELING MICROSCOPY , 1983 .

[54]  Flemming Jensen,et al.  z calibration of the atomic force microscope by means of a pyramidal tip , 1993 .

[55]  B D Ratner,et al.  Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Marco Salerno,et al.  Dynamical friction coefficient maps using a scanning force and friction microscope , 1994 .

[57]  P. Markiewicz,et al.  Atomic force microscope tip deconvolution using calibration arrays , 1995 .

[58]  Nongjian Tao,et al.  Direct measurement of interaction forces between colloidal particles using the scanning force microscope , 1993 .

[59]  Hideyuki Yoshimura,et al.  Artifacts in Atomic Force Microscopy Images of Fine Particle and Protein Two-Dimensional Crystals as Evaluated with Scanning Electron Microscopy and Simulations , 1995 .

[60]  Hans-Jürgen Butt,et al.  Height calibration of optical lever atomic force microscopes by simple laser interferometry , 1995 .

[61]  R. Lal,et al.  Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. , 1995, The American journal of physiology.

[62]  Udo D. Schwarz,et al.  Tip artefacts in scanning force microscopy , 1994 .

[63]  J. Villarrubia Scanned probe microscope tip characterization without calibrated tip characterizers , 1996 .

[64]  John E. Sader,et al.  Parallel beam approximation for V‐shaped atomic force microscope cantilevers , 1995 .

[65]  Matthias Rief,et al.  Sensing specific molecular interactions with the atomic force microscope , 1995 .

[66]  J. Sader,et al.  Method for the calibration of atomic force microscope cantilevers , 1995 .

[67]  Timothy Senden,et al.  Experimental Determination of Spring Constants in Atomic Force Microscopy , 1994 .

[68]  M. Arnsdorf,et al.  Calibration of the scanning (atomic) force microscope with gold particles , 1994, Journal of microscopy.

[69]  Dror Sarid,et al.  Review of scanning force microscopy , 1991 .

[70]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[71]  Robert W. Carpick,et al.  Calibration of frictional forces in atomic force microscopy , 1996 .

[72]  Kevin Kjoller,et al.  Low‐cost modification of a contact atomic force microscope (AFM) into a sound‐activated tapping mode AFM for use in air and liquids , 1996 .

[73]  J. Hoh,et al.  Calibration of optical lever sensitivity for atomic force microscopy , 1995 .