SambVca: A Web Application for the Calculation of the Buried Volume of N‐Heterocyclic Carbene Ligands

We present a free web application for the calculation of the buried volume (% VBur) of NHC ligands. The web application provides a graphic and user-friendly interface to the SambVca program, developed for the calculation of % VBur values not only of NHC ligands but also of other classic organometallic ligands such as, for example, phosphanes and cyclopentadienyl-based ligands. To provide a reliable procedure for the calculation of % VBur values we tested our approach in the interpretation of the binding energies of NHC ligands in Cp*Ru(NHC)Cl complexes in terms of steric and electronic parameters.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

[1]  L. Cavallo,et al.  Understanding the M(NHC) (NHC = N-heterocyclic carbene) bond , 2009 .

[2]  I. Guzei,et al.  Non-valent interactions and structural features of monomeric guanidinate complexes of rare earth metals: analyses and predictions based on the ligand solid angle , 2008 .

[3]  Luigi Cavallo,et al.  Thermodynamics of N-heterocyclic Carbene Dimerization: The Balance of Sterics and Electronics , 2008 .

[4]  Luigi Cavallo,et al.  Identification and characterization of a new family of catalytically highly active imidazolin-2-ylidenes. , 2008, Journal of the American Chemical Society.

[5]  L. Cavallo,et al.  Golden carousel in catalysis: the cationic gold/propargylic ester cycle. , 2008, Angewandte Chemie.

[6]  C. Suresh,et al.  Quantitative assessment of the stereoelectronic profile of phosphine ligands. , 2007, Inorganic chemistry.

[7]  L. Cavallo,et al.  Electronic Properties of N-Heterocyclic Carbene (NHC) Ligands: Synthetic, Structural, and Spectroscopic Studies of (NHC)Platinum(II) Complexes , 2007 .

[8]  S. Nolan,et al.  Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: A quest for understanding , 2007 .

[9]  C. Suresh,et al.  Electrostatic potential minimum of the aromatic ring as a measure of substituent constant. , 2007, The journal of physical chemistry. A.

[10]  I. Guzei,et al.  An improved method for the computation of ligand steric effects based on solid angles. , 2006, Dalton transactions.

[11]  C. Suresh Molecular electrostatic potential approach to determining the steric effect of phosphine ligands in organometallic chemistry. , 2006, Inorganic chemistry.

[12]  S. Nolan,et al.  Au(I)-catalyzed cycloisomerization of 1,5-enynes bearing a propargylic acetate: formation of unexpected bicyclo[3.1.0]hexene. , 2006, Chemical communications.

[13]  Jianguo Mei,et al.  Modified (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes for room-temperature Suzuki-Miyaura and Buchwald-Hartwig reactions. , 2006, Journal of the American Chemical Society.

[14]  Egon L. Willighagen,et al.  The Blue Obelisk—Interoperability in Chemical Informatics , 2006, J. Chem. Inf. Model..

[15]  R. Grubbs,et al.  Highly active chiral ruthenium catalysts for asymmetric ring-closing olefin metathesis. , 2006, Journal of the American Chemical Society.

[16]  L. Cavallo,et al.  Steric and electronic effects in the bonding of N-heterocyclic ligands to transition metals , 2005 .

[17]  Gernot Frenking,et al.  Chemical bonding in transition metal carbene complexes , 2005 .

[18]  J. Clyburne,et al.  Synthesis of Well-Defined N-Heterocyclic Carbene Silver(I) Complexes , 2005 .

[19]  L. Cavallo,et al.  Steric and electronic properties of N-heterocyclic carbenes (NHC): a detailed study on their interaction with Ni(CO)4. , 2005, Journal of the American Chemical Society.

[20]  C. Crudden,et al.  Stability and reactivity of N-heterocyclic carbene complexes , 2004 .

[21]  J. Harvey,et al.  When and how do diaminocarbenes dimerize? , 2004, Angewandte Chemie.

[22]  V. Nair,et al.  N-heterocyclic carbenes: reagents, not just ligands! , 2004, Angewandte Chemie.

[23]  L. Cavallo,et al.  Synthetic and Structural Studies of (NHC)Pd(allyl)Cl Complexes (NHC = N-heterocyclic carbene) , 2004 .

[24]  Luigi Cavallo,et al.  A Combined Experimental and Theoretical Study Examining the Binding of N-Heterocyclic Carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) Moiety: Insight into Stereoelectronic Differences between Unsaturated and Saturated NHC Ligands , 2003 .

[25]  K. Burgess,et al.  Chiral N-heterocyclic carbene-transition metal complexes in asymmetric catalysis , 2003 .

[26]  Yong Zhao,et al.  A priori assessment of the stereoelectronic profile of phosphines and phosphites. , 2003, Journal of the American Chemical Society.

[27]  A. Poë,et al.  Cone angles: Tolman's and Plato's , 2002 .

[28]  J. Buriak,et al.  Catalytic olefin hydrogenation using N-heterocyclic carbene???phosphine complexes of iridiumElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b2/b208403a/ , 2002 .

[29]  S. Nolan,et al.  Suzuki—miyaura cross-coupling reactions mediated by palladium/imidazolium salt systems. , 2002 .

[30]  A. Hoveyda,et al.  A recyclable chiral Ru catalyst for enantioselective olefin metathesis. Efficient catalytic asymmetric ring-opening/cross metathesis in air. , 2002, Journal of the American Chemical Society.

[31]  N. Koga,et al.  Quantifying the electronic effect of substituted phosphine ligands via molecular electrostatic potential. , 2002, Inorganic chemistry.

[32]  S. Nolan,et al.  Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems. , 2001, The Journal of organic chemistry.

[33]  J. Loch,et al.  Computed ligand electronic parameters from quantum chemistry and their relation to Tolman parameters, Lever parameters, and Hammett constants. , 2001, Inorganic chemistry.

[34]  R. Grubbs,et al.  Enantioselective ruthenium-catalyzed ring-closing metathesis. , 2001, Organic letters.

[35]  S. Nolan,et al.  Cationic Iridium Complexes Bearing Imidazol-2-ylidene Ligands as Transfer Hydrogenation Catalysts , 2001 .

[36]  A. Prock,et al.  Evaluation of the Stereoelectronic Parameters of Fluorinated Phosphorus(III) Ligands. The Quantitative Analysis of Ligand Effects (QALE) , 2001 .

[37]  R. Schrock,et al.  Catalytic asymmetric olefin metathesis. , 2001, Chemistry.

[38]  S. Nolan,et al.  A cationic iridium complex bearing an imidazol-2-ylidene ligand as alkene hydrogenation catalyst , 2001 .

[39]  S. Nolan,et al.  Development of olefin metathesis catalyst precursors bearing nucleophilic carbene ligands , 2001 .

[40]  A. Fürstner Olefin Metathesis and Beyond , 2000 .

[41]  R. Grubbs,et al.  Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. , 1999, Organic letters.

[42]  Tom Ziegler,et al.  An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package , 1999 .

[43]  Jinkun Huang,et al.  Olefin Metathesis-Active Ruthenium Complexes Bearing a Nucleophilic Carbene Ligand , 1999 .

[44]  W. Herrmann,et al.  A Novel Class of Ruthenium Catalysts for Olefin Metathesis. , 1998, Angewandte Chemie.

[45]  B. Taverner Improved algorithm for accurate computation of molecular solid angles , 1996, J. Comput. Chem..

[46]  Peter Schwerdtfeger,et al.  The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of InH, InF, and InCl , 1996 .

[47]  David White,et al.  Solid angles III. The role of conformers in solid angle calculations , 1995 .

[48]  Michael Dolg,et al.  Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide , 1994 .

[49]  W. Thiel,et al.  Ab initio study on the stability of diaminocarbenes , 1994 .

[50]  David White,et al.  Quantification of substituent and ligand size by the use of solid angles , 1993, J. Comput. Chem..

[51]  A. Prock,et al.  The quantitative analysis of ligand effects (QALE). The aryl effect , 1993 .

[52]  Peter Schwerdtfeger,et al.  Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials , 1993 .

[53]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[54]  A. Poë,et al.  Systematic kinetics of high nuclearity metal carbonyl clusters. Associative substitution reactions of RU6C(CO)17 with P-donor nucleophiles , 1992 .

[55]  T. L. Brown A molecular mechanics model of ligand effects. 3. A new measure of ligand steric effects , 1992 .

[56]  T. L. Brown,et al.  A molecular mechanics model of ligand effects. 1. Binding of phosphites to pentacarbonylchromium , 1991 .

[57]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[58]  J. Perdew,et al.  Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas , 1986, Physical review. B, Condensed matter.

[59]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[60]  William A. Goddard,et al.  Relation between singlet-triplet gaps and bond energies , 1986 .

[61]  G. Bodner,et al.  A Fourier transform carbon-13 NMR study of the electronic effects of phosphorus, arsenic, and antimony ligands in transition-metal carbonyl complexes , 1980 .

[62]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[63]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[64]  R. Hoffmann Trimethylene and the addition of methylene to ethylene , 1968 .

[65]  A. Bondi van der Waals Volumes and Radii , 1964 .

[66]  L. Cavallo,et al.  Determination of N-Heterocyclic Carbene (NHC) Steric and Electronic Parameters using the [(NHC)Ir(CO)2Cl] System , 2008 .

[67]  F. Glorius N-Heterocyclic Carbenes in Catalysis—An Introduction , 2006 .

[68]  R. Grubbs,et al.  The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. , 2001, Accounts of chemical research.

[69]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[70]  T. L. Brown,et al.  A molecular mechanics model of ligand effects. 2. Binding of phosphines to pentacarbonylchromium , 1992 .

[71]  A. Orpen,et al.  Structural systematics. Part 3. Geometry deformations in triphenylphosphine fragments: a test of bonding theories in phosphine complexes , 1991 .