Démonstration automatique en théorie des types
暂无分享,去创建一个
[1] David Delahaye,et al. A Tactic Language for the System Coq , 2000, LPAR.
[2] Christoph Kreitz,et al. Connection-based Theorem Proving in Classical and Non-classical Logics , 1999, J. Univers. Comput. Sci..
[3] Roy Dyckhoff,et al. Admissibility of Structural Rules for Contraction-Free Systems of Intuitionistic Logic , 2000, J. Symb. Log..
[4] Richard W. Weyhrauch,et al. A Decidable Fragment of Predicate Calculus , 1984, Theor. Comput. Sci..
[5] Gérard P. Huet,et al. The Zipper , 1997, Journal of Functional Programming.
[6] Thomas Ottmann. Proceedings of the 14th International Colloquium, on Automata, Languages and Programming , 1987 .
[7] Richard Statman,et al. Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..
[8] Sylvain Conchon,et al. Strategies for combining decision procedures , 2003, Theor. Comput. Sci..
[9] Gianluigi Bellin,et al. A Decision Procedure Revisited: Notes on Direct Logic, Linear Logic and its Implementation , 1992, Theor. Comput. Sci..
[10] Geoff Sutcliffe,et al. The TPTP Problem Library , 1994, Journal of Automated Reasoning.
[11] A. Heyting,et al. Intuitionism: An introduction , 1956 .
[12] Ashish Tiwari,et al. Abstract Congruence Closure , 2003, Journal of Automated Reasoning.
[13] J. Heijenoort. From Frege To Gödel , 1967 .
[14] Benjamin Grégoire,et al. A compiled implementation of strong reduction , 2002, ICFP '02.
[15] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[16] Robert A. Kowalski,et al. The Semantics of Predicate Logic as a Programming Language , 1976, JACM.
[17] Emil L. Post. Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.
[18] Gerald E. Peterson,et al. A Technique for Establishing Completeness Results in Theorem Proving with Equality , 1980, SIAM J. Comput..
[19] Ashish Tiwari,et al. Abstract Congruence Closure and Specializations , 2000, CADE.
[20] de Ng Dick Bruijn,et al. A survey of the project Automath , 1980 .
[21] F. Pfenning. Logic programming in the LF logical framework , 1991 .
[22] Greg Nelson,et al. Simplification by Cooperating Decision Procedures , 1979, TOPL.
[23] Vincent van Oostrom. Rewriting Techniques and Applications , 2004, Lecture Notes in Computer Science.
[24] Kurt Gödel,et al. On undecidable propositions of formal mathematical systems , 1934 .
[25] J. Harrison. Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .
[26] A. G. Dragálin. Mathematical Intuitionism. Introduction to Proof Theory , 1988 .
[27] Donald R. Morrison,et al. PATRICIA—Practical Algorithm To Retrieve Information Coded in Alphanumeric , 1968, J. ACM.
[28] Jörg Hudelmaier,et al. An O(n log n)-Space Decision Procedure for Intuitionistic Propositional Logic , 1993, J. Log. Comput..
[29] Greg Nelson,et al. Fast Decision Procedures Based on Congruence Closure , 1980, JACM.
[30] Robert E. Tarjan,et al. Variations on the Common Subexpression Problem , 1980, J. ACM.
[31] Cuihtlauac Alvarado. Réflexion pour la réécriture dans le calcul des constructions inductives , 2002 .
[32] G. Frege. Grundgesetze der Arithmetik , 1893 .
[33] Christoph Kreitz,et al. JProver : Integrating Connection-Based Theorem Proving into Interactive Proof Assistants , 2001, IJCAR.
[34] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[35] Thomas Hillenbrand,et al. The next WALDMEISTER loop , 2002 .
[36] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[37] de Ng Dick Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[38] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[39] Conor McBride,et al. Dependently typed functional programs and their proofs , 2000 .
[40] Christoph Kreitz,et al. The ILTP Library: Benchmarking Automated Theorem Provers for Intuitionistic Logic , 2005, TABLEAUX.
[41] L. Bachmair,et al. Completion without Failure 1 , 1989 .
[42] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[43] Hans de Nivelle,et al. Automated Proof Construction in Type Theory Using Resolution , 2000, CADE.
[44] G. B. M.. Principia Mathematica , 1911, Nature.
[45] Derek C. Oppen,et al. Reasoning about recursively defined data structures , 1978, POPL.
[46] Robert E. Shostak,et al. Deciding Combinations of Theories , 1982, JACM.