Algorithmes de calcul de la réduction de Hermite d'une matrice à coefficients polynomiaux
暂无分享,去创建一个
[1] Costas S. Iliopoulos. Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Infinite Abelian Groups and Solving Systems of Linear Diophantine Equations , 1989, SIAM J. Comput..
[2] James Lee Hafner,et al. Asymptotically fast triangulation of matrices over rings , 1991, SODA '90.
[3] George E. Collins,et al. Algorithms for the Solution of Systems of Linear Diophantine Equations , 1982, SIAM J. Comput..
[4] Costas S. Iliopoulos,et al. Worst-Case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix , 1989, SIAM J. Comput..
[5] M. A. Frumkin,et al. Complexity questions in number theory , 1985 .
[6] Ravi Kannan,et al. Solving Systems of Linear Equations over Polynomials , 1985, Theor. Comput. Sci..
[7] E. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination , 1968 .
[8] Stuart J. Berkowitz,et al. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..
[9] Laureano González-Vega,et al. Spécialisation de la suite de Sturm et sous-résulants , 1990, RAIRO Theor. Informatics Appl..
[10] Laureano González-Vega,et al. Spécialisation de la suite de Sturm , 1994, RAIRO Theor. Informatics Appl..
[11] P. Samuelson. A Method of Determining Explicitly the Coefficients of the Characteristic Equation , 1942 .
[12] Leslie E. Trotter,et al. Hermite Normal Form Computation Using Modulo Determinant Arithmetic , 1987, Math. Oper. Res..
[13] Michael A. Frumkin,et al. Polynomial Time Algorithms in the Theory of Linear Diophantine Equations , 1977, FCT.
[14] Ravi Kannan,et al. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..