The Distribution of Cloud Horizontal Sizes

AbstractCloud horizontal size distributions from near-global satellite data, from aircraft, and from a global high-resolution numerical weather prediction model, are presented for the scale range 0.1–8000 km and are shown to be well-represented using a single power-law relationship with an exponent of β = 1.66 ±0.04 from 0.1 to 1500 km or more. At scales longer than 1500 km, there is a statistically significant scale break with fewer very large clouds than expected from the power law. The size distribution is integrated to determine the contribution to cloud cover and visible reflectance from clouds larger than a given size. Globally, clouds with a horizontal dimension of 200 km or more constitute approximately 50% of the cloud cover and 60% of the reflectance, and this result is not sensitive to the minimum size threshold assumed in the integral assuming that the power law can be extrapolated below 100-m scale. The result is also not sensitive to whether the size distribution is determined using cloud se...

[1]  L. Remer,et al.  How small is a small cloud , 2008 .

[2]  Anthony B. Davis,et al.  Scale Invariance in Liquid Water Distributions in Marine Stratocumulus. Part II: Multifractal Properties and Intermittency Issues , 1997 .

[3]  E. Fetzer,et al.  Temperature and Water Vapor Variance Scaling in Global Models: Comparisons to Satellite and Aircraft Data , 2011 .

[4]  William B. Rossow,et al.  Structural Characteristics and Radiative Properties of Tropical Cloud Clusters , 1993 .

[5]  Judith A. Curry,et al.  Characteristics of small tropical cumulus clouds and their impact on the environment , 1998 .

[6]  Roel Neggers,et al.  Size Statistics of Cumulus Cloud Populations in Large-Eddy Simulations , 2003 .

[7]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[8]  B. Albrecht,et al.  Marine boundary layer structure and fractional cloudiness , 1995 .

[9]  R. Smith A scheme for predicting layer clouds and their water content in a general circulation model , 1990 .

[10]  S. Lovejoy Area-Perimeter Relation for Rain and Cloud Areas , 1982, Science.

[11]  R. Wood,et al.  Comparison of probability density functions for total specific humidity and saturation deficit humidity, and consequences for cloud parametrization , 2002 .

[12]  Shaun Lovejoy,et al.  Multifractals, cloud radiances and rain , 2006 .

[13]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  Harm J. J. Jonker,et al.  Size Distributions and Dynamical Properties of Shallow Cumulus Clouds from Aircraft Observations and Satellite Data , 2003 .

[15]  C. Bretherton,et al.  Mesoscale Variability and Drizzle in Southeast Pacific Stratocumulus , 2005 .

[16]  Richard Essery,et al.  Explicit representation of subgrid heterogeneity in a GCM land surface scheme , 2003 .

[17]  Brian Cairns,et al.  Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget , 2013 .

[18]  M. Desbois,et al.  Structural Characteristics of Deep Convective Systems over Tropical Africa and the Atlantic Ocean , 1992 .

[19]  Robert Wood,et al.  Relationships between Total Water, Condensed Water, and Cloud Fraction in Stratiform Clouds Examined Using Aircraft Data. , 2000 .

[20]  Anthony B. Davis,et al.  Scale Invariance of Liquid Water Distributions in Marine Stratocumulus. Part I: Spectral Properties and Stationarity Issues , 1996 .

[21]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[22]  V. Ramanathan,et al.  Scale Dependence of the Thermodynamic Forcing of Tropical Monsoon Clouds: Results from TRMM Observations , 2001 .

[23]  D. Schertzer,et al.  Horizontal cascade structure of atmospheric fields determined from aircraft data , 2010 .

[24]  C. Bretherton,et al.  Boundary Layer Depth, Entrainment, and Decoupling in the Cloud-Capped Subtropical and Tropical Marine Boundary Layer , 2004 .

[25]  Robert G. Knollenberg,et al.  The Optical Array: An Alternative to Scattering or Extinction for Airborne Particle Size Determination , 1970 .

[26]  Stephen W. Nesbitt,et al.  Mesoscale Convective Systems and Critical Clusters , 2009 .

[27]  G. D. Nastrom,et al.  A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft , 1985 .

[28]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[29]  Anthony B. Davis,et al.  Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales , 1999 .

[30]  Jonathan P. Taylor,et al.  Liquid water path variability in unbroken marine stratocumulus cloud , 2001 .

[31]  Vernon G. Plank,et al.  The Size Distribution of Cumulus Clouds in Representative Florida Populations , 1969 .

[32]  C. Bretherton,et al.  Moisture Transport, Lower-Tropospheric Stability, and Decoupling of Cloud-Topped Boundary Layers , 1997 .

[33]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[34]  O. Boucher,et al.  Satellite-based estimate of the direct and indirect aerosol climate forcing , 2008 .

[35]  Trevor Davies,et al.  An Overview of Numerical Methods for the Next Generation U.K. NWP and Climate Model , 1997 .

[36]  Michael D. King,et al.  Comparative accuracy of selected multiple scattering approximations , 1986 .

[37]  R. Wood,et al.  Spatial variability of liquid water path in marine low cloud : The importance of mesoscale cellular convection , 2006 .

[38]  P. Field,et al.  Properties of normalised rain‐rate distributions in the tropical Pacific , 2009 .

[39]  Robert F. Cahalan,et al.  Independent Pixel and Monte Carlo Estimates of Stratocumulus Albedo , 1994 .

[40]  Guangyu Zhao,et al.  Statistics on the macrophysical properties of trade wind cumuli over the tropical western Atlantic , 2007 .

[41]  S. Sengupta,et al.  Marine Stratocumulus Cloud Fields off the Coast of Southern California Observed Using LANDSAT Imagery. Part I: Structural Characteristics , 1988 .

[42]  S. K. Sengupta,et al.  Marine Stratocumulus Cloud Fields off the Coast of Southern California Observed Using LANDSAT Imagery. Part II: Textural Analysis , 1988 .

[43]  Damian R. Wilson,et al.  A microphysically based precipitation scheme for the UK meteorological office unified model , 1999 .

[44]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[45]  B. Kahn,et al.  A Global Climatology of Temperature and Water Vapor Variance Scaling from the Atmospheric Infrared Sounder , 2009 .

[46]  D. Schertzer,et al.  Direct evidence of multifractal atmospheric cascades from planetary scales down to 1 km. , 2001, Physical review letters.

[47]  Geneviève Sèze,et al.  Effects of satellite data resolution on measuring the space/time variations of surfaces and clouds , 1991 .

[48]  Robert F. Cahalan,et al.  Bounded cascade models as nonstationary multifractals. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.