Fixed-Target Runtime Analysis

The heavy-tailed mutation operator proposed in Doerr et al. (GECCO 2017), called fast mutation to agree with the previously used language, so far was successfully used only in purely mutation-based algorithms. There, it can relieve the algorithm designer from finding the optimal mutation rate and nevertheless obtain a performance close to the one that the optimal mutation rate gives. In this first runtime analysis of a crossover-based algorithm using a heavy-tailed choice of the mutation rate, we show an even stronger impact. With a heavy-tailed mutation rate, the runtime of the (1 + (λ, λ)) genetic algorithm on the OneMax benchmark function becomes linear in the problem size. This is asymptotically faster than with any static mutation rate and is the same asymptotic runtime that can be obtained with a self-adjusting choice of the mutation rate. This result is complemented by an empirical study which shows the effectiveness of the fast mutation also on random MAX-3SAT instances.

[1]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[2]  Abraham Wald,et al.  Some Generalizations of the Theory of Cumulative Sums of Random Variables , 1945 .

[3]  Thomas Bäck,et al.  Theory of Evolutionary Computation: Recent Developments in Discrete Optimization , 2020, Theory of Evolutionary Computation.

[4]  Benjamin Doerr,et al.  Fast genetic algorithms , 2017, GECCO.

[5]  Benjamin Doerr Does comma selection help to cope with local optima? , 2020, GECCO.

[6]  William F. Punch,et al.  Parameter-less population pyramid , 2014, GECCO.

[7]  Carsten Witt,et al.  Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions† , 2013, Combinatorics, Probability and Computing.

[8]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2010, GECCO '12.

[9]  Carsten Witt,et al.  The Interplay of Population Size and Mutation Probability in the (1+λ) EA on OneMax , 2017, Algorithmica.

[10]  Olivier Teytaud,et al.  General Lower Bounds for Evolutionary Algorithms , 2006, PPSN.

[11]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[12]  Dirk Sudholt,et al.  The choice of the offspring population size in the (1, λ) evolutionary algorithm , 2014, Theor. Comput. Sci..

[13]  Adam Prügel-Bennett,et al.  When a genetic algorithm outperforms hill-climbing , 2004, Theor. Comput. Sci..

[14]  Carsten Witt,et al.  Runtime Analysis of the ( μ +1) EA on Simple Pseudo-Boolean Functions , 2006 .

[15]  Benjamin Doerr,et al.  A tight runtime analysis for the (1 + (λ, λ)) GA on leadingones , 2019, FOGA '19.

[16]  Benjamin Doerr,et al.  Probabilistic Tools for the Analysis of Randomized Optimization Heuristics , 2018, Theory of Evolutionary Computation.

[17]  Carsten Witt,et al.  Runtime Analysis of the ( + 1) EA on Simple Pseudo-Boolean Functions , 2006, Evolutionary Computation.

[18]  Benjamin Doerr,et al.  The (1 + (λ,λ)) GA is even faster on multimodal problems , 2020, GECCO.

[19]  Carsten Witt,et al.  The Interplay of Population Size and Mutation Probability in the ($$1+\lambda $$1+λ) EA on OneMax , 2016, Algorithmica.

[20]  Per Kristian Lehre,et al.  Fitness-levels for non-elitist populations , 2011, GECCO '11.

[21]  Xin Yao,et al.  Drift analysis and average time complexity of evolutionary algorithms , 2001, Artif. Intell..

[22]  Carola Doerr,et al.  Towards a More Practice-Aware Runtime Analysis of Evolutionary Algorithms , 2017, ArXiv.

[23]  Benjamin Doerr,et al.  From black-box complexity to designing new genetic algorithms , 2015, Theor. Comput. Sci..

[24]  Thomas Jansen,et al.  Mutation Rate Matters Even When Optimizing Monotonic Functions , 2013, Evolutionary Computation.

[25]  Kenneth A. De Jong,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods on the Choice of the Offspring Population Size in Evolutionary Algorithms on the Choice of the Offspring Population Size in Evolutionary Algorithms , 2004 .

[26]  Anne Auger,et al.  Theory of Randomized Search Heuristics: Foundations and Recent Developments , 2011, Theory of Randomized Search Heuristics.

[27]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[28]  Thomas Jansen,et al.  Analyzing Evolutionary Algorithms , 2015, Natural Computing Series.

[29]  Benjamin Doerr,et al.  A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization , 2020, ArXiv.

[30]  Benjamin Doerr,et al.  Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( , 2017, Algorithmica.

[31]  Benjamin Doerr,et al.  Runtime analysis of the (1 + (λ, λ)) genetic algorithm on random satisfiable 3-CNF formulas , 2017, GECCO.

[32]  H. Szu Fast simulated annealing , 1987 .

[33]  Christopher R. Stephens,et al.  "Optimal" mutation rates for genetic search , 2006, GECCO.

[34]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[35]  Thomas Jansen,et al.  Analyzing Evolutionary Algorithms: The Computer Science Perspective , 2012 .

[36]  Marvin Künnemann,et al.  Optimizing linear functions with the (1+λ) evolutionary algorithm - Different asymptotic runtimes for different instances , 2015, Theor. Comput. Sci..

[37]  Johannes Lengler,et al.  A General Dichotomy of Evolutionary Algorithms on Monotone Functions , 2018, IEEE Transactions on Evolutionary Computation.

[38]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[39]  Per Kristian Lehre,et al.  Negative Drift in Populations , 2010, PPSN.