Recursive subspace identification of linear and nonlinear Wiener type models

The problem of recursive subspace identification is considered and recursive formulations for the algorithms of the MOESP class are given. As a by-product, a recursive algorithm for the identification of nonlinear models of the Wiener type is also obtained.

[1]  Gene H. Golub,et al.  Matrix computations , 1983 .

[2]  M. Verhaegen,et al.  A fast, recursive MIMO state space model identification algorithm , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[3]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[4]  Thomas Kailath,et al.  Fast recursive identification of state space models via exploitation of displacement structure , 1994, Autom..

[5]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[6]  T. McKelvey Identification of State-Space Models from Time and Frequency Data , 1995 .

[7]  P. Overschee Subspace Identification: Theory, Implementation, Application , 1995 .

[8]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[9]  M. Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[10]  Michel Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1996, Signal Process..

[11]  T. Gustafsson Recursive System Identification Using Instrumental Variable Subspace Tracking , 1997 .

[12]  Tony Gustafsson,et al.  Instrumental variable subspace tracking using projection approximation , 1998, IEEE Trans. Signal Process..