Rate-Compatible Serially Concatenated Codes with Outer Extended BCH Codes

In this paper, we propose a rate-compatible serially concatenated structure consisting of an outer linear extended BCH code and an inner recursive systematic convolutional code. Rate flexibility is achieved by puncturing the inner code. A two- step code design procedure combining analytical union bounds with Extrinsic Information Transfer charts is used to obtain codes offering very good performance in both the waterfall and the error floor regions over a wide range of code rates. The resulting codes show interesting advantages in terms of convergence and error floor compared to similar structures using convolutional codes as outer codes.

[1]  Marc P. C. Fossorier,et al.  High-rate serially concatenated coding with extended Hamming codes , 2005, IEEE Communications Letters.

[2]  Lars K. Rasmussen,et al.  Design of Rate-Compatible Serially Concatenated Convolutional Codes , 2006, ArXiv.

[3]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[4]  David Chase,et al.  Class of algorithms for decoding block codes with channel measurement information , 1972, IEEE Trans. Inf. Theory.

[5]  Marc P. C. Fossorier,et al.  Serial Concatenation of Linear Block Codes and a Rate-1 Convolutional Code , 2006 .

[6]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[7]  S. Dolinar,et al.  Concatenation of Hamming Codes and Accumulator Codes with High-Order Modulations for High-Speed Decoding , 2004 .

[8]  F. Pollara,et al.  Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.

[9]  Joseph J. Boutros,et al.  Turbo code at 0.03 dB from capacity limit , 2002, Proceedings IEEE International Symposium on Information Theory,.

[10]  Alexandre Graell i Amat,et al.  Design and performance analysis of a new class of rate compatible serially concatenated convolutional codes , 2009, IEEE Transactions on Communications.

[11]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[12]  Alexandre Graell i Amat,et al.  Analysis and design of rate compatible serial concatenated convolutional codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[13]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[14]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..