A Lagrangian dual approach to the Generalized KYP lemma

This paper presents a new, elementary proof for the Generalized Kalman-Yakubovich-Popov lemma based on Lagrangian duality, and a new sufficient Linear Matrix Inequality test for a bandpass type frequency bound. Numerical experiments have failed to find a gap, so it is possible that the new LMI test may be necessary.

[1]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[2]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[3]  Fernando Paganini,et al.  A Course in Robust Control Theory , 2000 .

[4]  Goele Pipeleers,et al.  Generalized KYP Lemma With Real Data , 2011, IEEE Transactions on Automatic Control.

[5]  R. Firoozian Feedback Control Theory , 2009 .

[6]  Carsten W. Scherer,et al.  LMI Relaxations in Robust Control , 2006, Eur. J. Control.

[7]  T. Iwasaki,et al.  Generalized S-procedure and finite frequency KYP lemma , 2000 .

[8]  Yoshio Ebihara,et al.  An elementary proof for the exactness of (D, G) scaling , 2009, 2009 American Control Conference.

[9]  Takashi Tanaka,et al.  Symmetric formulation of the Kalman-Yakubovich-Popov lemma and exact losslessness condition , 2011, IEEE Conference on Decision and Control and European Control Conference.

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.