Correlation Length versus Gap in Frustration-Free Systems.

Hastings established exponential decay of correlations for ground states of gapped quantum many-body systems. A ground state of a (geometrically) local Hamiltonian with spectral gap ε has correlation length ξ upper bounded as ξ=O(1/ε). In general this bound cannot be improved. Here we study the scaling of the correlation length as a function of the spectral gap in frustration-free local Hamiltonians, and we prove a tight bound ξ=O(1/sqrt[ε]) in this setting. This highlights a fundamental difference between frustration-free and frustrated systems near criticality. The result is obtained using an improved version of the combinatorial proof of correlation decay due to Aharonov, Arad, Vazirani, and Landau.

[1]  P. Pfeuty The one-dimensional Ising model with a transverse field , 1970 .

[2]  Or Sattath,et al.  When must a local Hamiltonian be frustration free? , 2015, ArXiv.

[3]  Andris Ambainis,et al.  A quantum lovász local lemma , 2009, STOC '10.

[4]  Daniel Nagaj,et al.  Quantum 3-SAT Is QMA1-Complete , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[5]  Peter W. Shor,et al.  Power law violation of the area law in quantum spin chains , 2014, 1408.1657.

[6]  M. B. Hastings,et al.  Locality in Quantum Systems , 2010, 1008.5137.

[7]  D. Rokhsar,et al.  Superconductivity and the quantum hard-core dimer gas. , 1988, Physical review letters.

[8]  M. Continentino Quantum scaling in many-body systems , 2017 .

[9]  Or Sattath,et al.  When a local Hamiltonian must be frustration-free , 2015, Proceedings of the National Academy of Sciences.

[10]  Sergey Bravyi,et al.  Efficient algorithm for a quantum analogue of 2-SAT , 2006, quant-ph/0602108.

[11]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[12]  Daniel Nagaj,et al.  Criticality without frustration for quantum spin-1 chains. , 2012, Physical review letters.

[13]  Matthew B. Hastings,et al.  Spectral Gap and Exponential Decay of Correlations , 2005 .

[14]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[15]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[16]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and the Exponential Clustering Theorem , 2005, math-ph/0506030.

[17]  Frank Verstraete,et al.  Peps as unique ground states of local hamiltonians , 2007, Quantum Inf. Comput..

[18]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[19]  Peter W Shor,et al.  Supercritical entanglement in local systems: Counterexample to the area law for quantum matter , 2016, Proceedings of the National Academy of Sciences.

[20]  U. Vazirani,et al.  The detectability lemma and its applications to quantum Hamiltonian complexity , 2011 .

[21]  Fusca Product , 1972, The Veterinary record.

[22]  Salinas,et al.  Anisotropic ferromagnetic quantum domains. , 1995, Physical review letters.

[23]  Umesh Vazirani,et al.  An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.

[24]  R. F. Werner,et al.  Ground states of the infinite q-deformed Heisenberg ferromagnet , 1995 .

[25]  T. Osborne Hamiltonian complexity , 2011, Reports on progress in physics. Physical Society.

[26]  Matthew B. Hastings Random MERA states and the tightness of the Brandao-Horodecki entropy bound , 2016, Quantum Inf. Comput..

[27]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[28]  David Gosset,et al.  Gapped and gapless phases of frustration-free spin- /1 2 chains , 2015, 1503.04035.

[29]  Anurag Anshu,et al.  A simple proof of the detectability lemma and spectral gap amplification , 2016, 1602.01210.

[30]  Seung Woo Shin,et al.  Quantum Hamiltonian Complexity , 2014, Found. Trends Theor. Comput. Sci..

[31]  U. Vazirani,et al.  Improved one-dimensional area law for frustration-free systems , 2011, 1111.2970.

[32]  Christopher R. Laumann,et al.  On product, generic and random generic quantum satisfiability , 2009, ArXiv.

[33]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[34]  M. B. Hastings,et al.  Lieb-Schultz-Mattis in higher dimensions , 2004 .

[35]  Alexander Russell,et al.  Bounds on the Quantum Satisfiability Threshold , 2009, ICS.

[36]  TOHRU KOMA,et al.  The Spectral Gap of the Ferromagnetic XXZ-Chain , 1995 .

[37]  Yichen Huang,et al.  Area law in one dimension: Degenerate ground states and Renyi entanglement entropy , 2014, 1403.0327.

[38]  M. Hastings,et al.  Locality in quantum and Markov dynamics on lattices and networks. , 2004, Physical review letters.

[39]  David Gosset,et al.  Local gap threshold for frustration-free spin systems , 2015, 1512.00088.